Springvale Mine

Springvale Mine Extension Project
State Significant Development 5594

Environmental Impact Statement

Volume 1: Report
07 April 2014
Statement of Validity

Submission of Environmental Impact Statement prepared under Part 4 of the New South Wales
Environmental Planning and Assessment Act 1979.

<table>
<thead>
<tr>
<th>Title</th>
<th>Project Manager; Senior Environmental Consultant</th>
<th>Project Director; Principal EIA Specialist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Rachel Dodd</td>
<td>Mike Shelly</td>
</tr>
<tr>
<td>Qualifications</td>
<td>BSc (Hons), MRes</td>
<td>BSc</td>
</tr>
<tr>
<td>Address</td>
<td>Level 3, 28 Honeysuckle Drive, Newcastle, 2300</td>
<td></td>
</tr>
<tr>
<td>New South Wales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In respect of</td>
<td>Springvale Mine Extension Project, Environmental Impact Statement</td>
<td></td>
</tr>
<tr>
<td>Applicant name</td>
<td>Springvale Coal Pty Limited</td>
<td></td>
</tr>
<tr>
<td>Applicant address</td>
<td>Level 18, BT Tower, 1 Market St Sydney</td>
<td></td>
</tr>
<tr>
<td>Proposed development</td>
<td>Springvale Mine Extension Project</td>
<td></td>
</tr>
<tr>
<td>Land to be developed</td>
<td>Refer to attached schedule of land (Appendix C).</td>
<td></td>
</tr>
<tr>
<td>Environmental Assessment</td>
<td>An Environmental Impact Statement is attached, which addresses all matters in accordance with Part 4 of the Environmental Planning and Assessment Act 1979.</td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>This Environmental Impact Statement has been prepared by Golder Associates Pty Ltd on behalf of Springvale Coal Pty Limited. In preparing the Environmental Impact Statement, Golder Associates has relied upon data, designs and plans and other information provided by Springvale Coal Pty Limited and other individuals and organisations referenced herein.</td>
<td></td>
</tr>
<tr>
<td>Declaration</td>
<td>I certify that I have prepared the contents of this EIS and to the best of my knowledge: It is in accordance with clauses 6 and 7 of Schedule 2 of the Environmental Planning and Assessment Regulation 2000; It contains all available information that is relevant to the environmental impact statement assessment of the development to which this statement relates; and It is true in all material particulars and does not, by its presentation or omission of information, materially mislead.</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>7 April 2014</td>
<td></td>
</tr>
</tbody>
</table>
Record of Issue

<table>
<thead>
<tr>
<th>Company</th>
<th>Client Contact</th>
<th>Version</th>
<th>Date Issued</th>
<th>Method of Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golder Associates</td>
<td>Centennial Coal Iain Hornshaw</td>
<td>Rev 1</td>
<td>18.11.14</td>
<td>Electronic (Email)</td>
</tr>
<tr>
<td>Golder Associates</td>
<td>Centennial Coal Iain Hornshaw</td>
<td>Rev 2 (updated by Golder based on adequacy comments)</td>
<td>10.02.14</td>
<td>Electronic (Email)</td>
</tr>
<tr>
<td>Golder Associates</td>
<td>Centennial Coal Iain Hornshaw</td>
<td>Rev 3 (revised and updated by Golder for post adequacy submission)</td>
<td>25.03.14</td>
<td>Electronic (Email)</td>
</tr>
<tr>
<td>Golder Associates</td>
<td>Centennial Coal Iain Hornshaw</td>
<td>Rev 4 (updated with minor comments for DoPI submission)</td>
<td>07.04.14</td>
<td>Electronic (Email)</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Introduction and Overview

Springvale Mine is owned by Centennial Springvale Pty. Limited (as to 50%) and Springvale SK Kores Pty Limited (as to 50%) as participants in the Springvale unincorporated joint venture. Springvale Mine is operated by Springvale Coal Pty Limited (Springvale Coal), for and on behalf of the Springvale joint venture participants. Springvale Coal is the operator of the Springvale joint venture. Springvale Mine is an existing underground coal mine producing high quality thermal coal for both domestic and international markets. It is located 15 kilometres to the northwest of the regional city of Lithgow and 120 kilometres west-northwest of Sydney in New South Wales. Underground coal mining commenced at Springvale Mine in 1995 following the granting of Springvale’s development consent (DA 11/92) on 27 July 1992, pursuant to Section 101 under Part 4 of the Environmental Planning and Assessment Act 1979. DA 11/92 and its subsequent modifications remain in force and authorises the extraction of up to 4.5 million tons of run-of-mine coal per annum at Springvale Mine. The current development consent will expire on 28 September 2014. Development consent is required to ensure Springvale Mine continues to operate beyond this date.

The Springvale Mine Extension Project (the Project) is State Significant Development in accordance with Clause 8 and Schedule 1 (Item 5) of State Environmental Planning Policy (State and Regional Development) 2011. Springvale Coal, as the Applicant of the Project, is seeking approval under Part 4 Division 4.1 of the Environmental Planning and Assessment Act 1979.

A request for Director-General Requirements (DGRs) for the Project was lodged in September 2012 to the Department of Planning and Infrastructure (DP&I). The DGRs for the Project (SSD 12_5594) were issued on 6 November 2012. As the Project had the potential to impact on matters of national environmental significance under the Environment Protection and Biodiversity Conservation Act 1999 (the EPBC Act), a referral was submitted to the former Department of Sustainability, Environment, Water, Population and Communities (SEWPAC) on 20 May 2013. The Project was subsequently declared a controlled action on 7 July 2013, and supplementary DGRs issued on 30 August 2013.

This Environment Impact Statement (EIS) has been prepared in support of the development application for the Project. It is informed by a wide range of technical assessments determined using a risk based approach. The technical assessments identify, assess and provide management and mitigation measures for potential environmental impacts associated with the Project. The technical assessments and the EIS have been prepared to meet the DGRs, the supplementary DGRs, and the environmental assessment requirement of other Government agencies.

Project Description

The components of Springvale Mine’s existing operations are an underground longwall mine, the Springvale pit top, and supporting surface infrastructure on Newnes Plateau within the Newnes State Forest.

The Project will not significantly alter the nature of the existing operations at Springvale Mine. The Project will:

- in general, include all currently approved operations, facilities and infrastructure of the Springvale Mine, except as otherwise indicated in this EIS;
- continue to extract up to 4.5 million tonnes per annum (Mtpa) of ROM coal from the Lithgow Seam underlying the Project Application Area;
- extend the life of the mine for an additional 13 years with rehabilitation to be undertaken after this period;
- develop underground access headings and roadways from the current mining area to the east to allow access to the proposed mining areas;
- undertake secondary extraction by retreat longwall mining technique for the proposed longwalls LW416 to LW432 and LW501 to LW503;
continue to use the existing ancillary surface facilities at the Springvale pit top;
continue to manage the handling of ROM coal through a crusher and screening plant at the Springvale pit top, and the subsequent loading of the coal onto the existing overland conveyor system for despatch to offsite locations (Section 1.8);
continue to operate and maintain the existing ancillary surface infrastructure for ventilation, electricity, water, materials supply, and communications at the Springvale pit top and on Newnes Plateau;
install and operate two additional dewatering bore facilities (Bores 9 and 10) on Newnes Plateau and the associated power and pipeline infrastructure, and upgrade the existing and construct two new sections of access tracks to Bores 9 and 10 facilities;
construct a downcast ventilation borehole at the Bore 10 facility location;
establish a services borehole area;
continue to use the existing Springvale Delta Water Transfer Scheme (SDWTS);
upgrade the existing SDWTS comprising construction of new sections of the trenched pipelines to increase the water delivery capacity of SDWTS from the existing 30 ML/day to up to 50 ML/day;
manage predicted increase in mine inflows using a combination of direct water transfer to the Wallerawang Power Station, via the SDWTS, and discharge through Angus Place Colliery’s licensed discharge point LDP001 and Springvale Mine’s LDP009;
continue to undertake existing and initiate new environmental monitoring programmes;
continue exploration activities, predominantly borehole drilling to further refine the existing geological model;
continue to operate 24 hours per day seven days per week, 52 weeks per year;
will provide employment to a full time workforce of up to 310 employees;
progressively rehabilitate disturbed areas at infrastructure sites no longer required for mining operations;
undertake life-of-mine rehabilitation at the Springvale pit top and the Newnes Plateau infrastructure disturbance areas to create final landforms commensurate with the surrounding areas and the relevant zonings of the respective areas; and
transfer the operational management and physical infrastructure regarding coal processing and distribution infrastructure to the Western Coal Services Project (when approved). The exception to this is that it will be the development consent granted in respect of the Springvale Mine Extension Project (and not the development consent granted in respect of the Western Coal Services Project) which will continue to authorise the transport of up to 50,000 tonnes per annum of coal to local domestic customers by road haulage.

Mine Design and Minimisation of Impacts to Sensitive Surface Features

The mine design has been revised in order to minimise impacts to sensitive surface features. It is based on extensive and long term monitoring of subsidence and related consequences to groundwater, surface water, biodiversity, cliffs and pagodas. The design is supported by detailed geological and geotechnical monitoring and analysis over many years of mining. The mine plan has sought to avoid undermining the majority of sensitive surface features and where this was not feasible, specific proven designs have been proposed to minimise environmental consequences.

Project Benefits

The EIS outlines a range of positive benefits that will accompany the Project at a local, regional and state level. Notable benefits are the following.
sustainable mining of coal whilst keeping adverse environmental impacts to a minimum. The mine plan has been optimised for maximum resource recovery while concurrently minimising subsidence impacts on the natural and built environment.

- improved understanding
 - of the existing groundwater and surface water systems;
 - of the biodiversity within the Project Application Area and the surrounds; and
 - management of Aboriginal heritage issues within the Project Application Area;

- sustained employment at Springvale Mine which currently has 310 permanent employees;

- the indirect benefit of the provision of coal for domestic use and export to provide for local and international energy requirements;

- injection of approximately $902M million into the local, regional, state and national economies for the life of the Project. This expenditure is likely to generate additional economic activity and flow on effects, providing further employment opportunities; and

- Springvale Mine is part of Centennial Coal’s Western Operations. Centennial Coal’s operations, and the broader mining industry, are critical to the economic sustainability of the Lithgow Local Government Area and the surrounding region. This role is acknowledged in the “Economic Development Strategy 2010-2014” (Lithgow City Council, 2010).

Consultation
Springvale Coal maintains an open two-way communication with the local community, consent authorities and other government agencies. A dedicated Stakeholder Engagement Plan was established for the Project. Numerous opportunities for input into the EIS development process was provided to all stakeholders identified in the Stakeholder Engagement Plan. Issues raised by the stakeholders have been addressed in the EIS.

Consultation with the identified stakeholders will be ongoing and will be undertaken in accordance with the Stakeholder Engagement Plan. The Springvale Mine website will provide updates on the Project for all stakeholders while the internal stakeholders (Springvale Coal and other Centennial Coal employees) will also be given information on the Project via information sessions and meetings.

Key Environmental Issues and Assessment
Potential environmental issues associated with the Project were identified through a Broad-Brush Risk Assessment for the EIS, completed in March 2011, and was supplemented by a subsidence constraints risk assessment in November 2012 attended by a team of specialist consultants. Environmental aspects identified for assessments were prioritized. Subsidence impacts on groundwater, surface water, biodiversity and geodiversity were assessed to have significant potential impact.

The table below presents an overview of the key environmental outcomes of the technical assessments undertaken for the EIS.
Summary of Environmental Impacts

<table>
<thead>
<tr>
<th>Environmental Issue</th>
<th>Overview of Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cliffs</td>
<td>The predicted maximum strains for the cliffs are 1.5 mm tensile and 0.5 mm compressive and no spalling or cracking is predicted.</td>
</tr>
<tr>
<td>Pagodas</td>
<td>The predicted maximum strains for the pagodas are 1.5 mm tensile and 0.5 mm compressive and no spalling or cracking is predicted.</td>
</tr>
<tr>
<td>Watercourses</td>
<td>No significant fracturing, ponding or scouring is predicted for the Wolgan River or Carne Creek or their tributaries.</td>
</tr>
<tr>
<td>Conservation Areas</td>
<td>The nearest conservation reserve, the Gardens of Stone National Park and the wider Blue Mountain World Heritage Area, will not experience any measurable subsidence movements as a result of the Project.</td>
</tr>
<tr>
<td>Swamps</td>
<td>Longwall mining by the Project is unlikely to have a significant impact on swamps.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>The significant depressurisation of aquifers in strata overlying the coal seam has been shown to have minimal impact on the shallow and perched aquifer systems across Newnes Plateau; Groundwater monitoring data shows that mining induced groundwater level impacts in the deeper aquifer units are limited to areas close to or directly overlying the mined area; Mine water inflow rates are predicted to increase as a consequence of the mine extension. This increased mine water make will continue to provide the critical base water supply for the power stations in the catchment; Groundwater modelling (CSIRO, 2013) has shown that: o there is a separation in response to mining above and below the Mount York Claystone aquitard; and o there is a lack of propagation of mine-induced impacts through the Mount York Claystone aquitard.</td>
</tr>
<tr>
<td>Surface Water</td>
<td>The predicted depressurisation of aquifers in strata overlying the coal seam will have minimal impact on the shrub and hanging swamps on Newnes Plateau and the surface drainage network of the water supply catchments; and Mine water discharges will increase as a result of the Project and this water will be piped into the Coxs River for reuse by local power stations. The consequence of increased discharge to the Coxs River is not significant since there is excess demand for this water resource in this catchment. Mine water discharges into the surface catchment have a neutral effect on water quality since the beneficial use of that water as potential drinking water is maintained.</td>
</tr>
<tr>
<td>Ecology</td>
<td>No significant impacts are predicted on threatened species or EECs; and No significant impacts are predicted on aquatic habitats, flora, fauna or stygofauna.</td>
</tr>
<tr>
<td>Aboriginal Heritage</td>
<td>Subsidence at site 45-1-0002 may cause the sandstone where the grinding groove is or was located to fracture and damage the site should it still remain. The recent survey was unable to find any evidence remaining of the site, probably due to the extensive vehicle traffic; and Predicted subsidence at sites 45-1-0005 and 45-1-0065 is not expected to damage these two sites.</td>
</tr>
<tr>
<td>Traffic and Transport</td>
<td>There will be no change to the Springvale pit top traffic; and There will be no significant impact upon the capacity, efficiency and safety of the local, sub-regional and regional road network as a result of construction traffic to and from the surface infrastructure sites.</td>
</tr>
<tr>
<td>Socio-Economic</td>
<td>The Project will enable operations to continue over a period of approximately 13 years. This will secure ongoing employment opportunities and socio-economic flow on benefits over this time for the local community and up to 310 full time employees; and The total economic benefit of the Project is AU$902M.</td>
</tr>
<tr>
<td>Noise</td>
<td>Noise from construction of Newnes State Forest surface infrastructure will be within the project specific noise limits; and Noise from operation of the pit top will be within the project specific noise limits following the staged implementation of wide a range of mitigation measures that will reduce existing noise levels.</td>
</tr>
</tbody>
</table>
Environmental Impact Statement
Springvale Mine Extension Project

Overview of Key Findings

<table>
<thead>
<tr>
<th>Environmental Issue</th>
<th>Dust levels from the Project are predicted to meet relevant air quality criteria for TSP, PM₁₀, PM₂.₅ and dust deposition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Emissions will not increase as a result of the Project; and The total lifetime direct (Scope 1) emissions from the Project are estimated to be 26,633 tCO₂-e per annum, which is relatively small as this represents approximately 0.01% of NSW GHG emissions and 0.004% of Australia’s total GHG emissions.</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td>Minimal impact to the soils, land and soil capability across the Project Application Area are predicted; and There is no biophysical strategic agricultural land within the Project Application Area.</td>
</tr>
<tr>
<td>Soils and Land Capability / Agricultural Suitability</td>
<td>Minimal impacts on the visual character and amenity of the Project Application Area are predicted. On cessation of all mining activities the disturbance areas will be fully rehabilitated to create stable and self-sustaining landform for the nominated end land use of woodland.</td>
</tr>
<tr>
<td>Visual</td>
<td>No change to the annualised waste materials volumes will occur due to the Project.</td>
</tr>
<tr>
<td>Waste Management</td>
<td>No increased environmental or safety risk from hazardous materials, spontaneous combustion, bushfire or public safety will occur due to the Project.</td>
</tr>
</tbody>
</table>

Environmental Management System

Springvale Mine will continue to implement its well established Environmental Management System (EMS) developed in accordance with the Centennial Coal’s EMS Framework. The EMS ensures the effective management of environmental issues and compliance with all regulatory requirements. The EMS incorporates a large number of Environmental Management Plans (EMPs) designed to assist in meeting community expectations and regulatory conditions, including the conditions of the Environment Protection Licence for Springvale Mine.

These EMPs will be reviewed and updated for the Project, as appropriate, and will take into consideration the environmental assessments undertaken as part of this EIS, the commitments made in the EIS and all relevant consent conditions.

Justification and Conclusion

Springvale Mine has a long history in the area, with well-established community relationships. Due to knowledge gained from historical operations, Springvale Mine has an excellent understanding of mine design principles and requirements for the protection of surface features, and management of potential environmental impacts. This is provided for by a range of management plans and a conservative, proven mine design that has been successfully implemented in adjacent mining areas with minimal adverse impacts.

The potential environmental impacts of the Project have been minimised through the following.

- Obtaining a detailed understanding of the key environmental issues. The multi-disciplinary assessment and consultation has been to a level of detail commensurate with the scale of the Project, industry standards and the legislative framework under which the Project is considered.
- A mine design with a successful and proven history of elimination or minimisation of surface subsidence impacts and one that is safe for the underground workforce and visitors to the surface.
- Expert subsidence predictions based on historical survey monitoring data used to inform impact assessments.
- The development of a robust, numerical groundwater model which commenced development in 2004 and which has been validated with extensive mine water inflow and groundwater level data, and that is capable of predicting mine inflows and potential groundwater impacts with a high level of certainty.
Commitment to continue implementation of the existing proactive strategies and management plans employed at Springvale Mine to avoid, minimise, mitigate, offset or manage potential impacts.

Springvale Coal has shown a commitment to the principles of Ecologically Sustainable Development (ESD) and understands that social, economic and environmental objectives are interdependent. Springvale Coal acknowledges that a well-designed safe and effectively managed operation will avoid significant and/or costly environmental impact or degradation. The Project design and the suite of existing EMPs have been developed on a risk-basis to appropriately identify, mitigate and manage environmental risk. These demonstrate environmental due diligence and provide procedures for on-going management and monitoring of the operation in-line with the objectives of ESD.

The socio-economic output of the Project, particularly in terms of direct and indirect employment and flow-on benefits, is anticipated to make a positive contribution to the Lithgow Local Government Area and the surrounding region. Furthermore, as a continuing operation, the Project will not significantly influence social and community infrastructure requirements.

Accordingly, it is considered that the Project will meet environmental performance and socio-economic benefit requirements in order for the Project to be considered for approval.
GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm subsidence</td>
<td>The 20 mm subsidence contour is an industry defined limit and represents the practical measurable limit of subsidence.</td>
</tr>
<tr>
<td>Air dispersion model</td>
<td>A computer-based software programme which provides a mathematical prediction of how pollutants from a source will be distributed in the surrounding area under specific conditions of wind, temperature, humidity and other environmental factors.</td>
</tr>
<tr>
<td>Ambient</td>
<td>Pertaining to the surrounding environment or prevailing conditions.</td>
</tr>
<tr>
<td>Angle of draw</td>
<td>The angle measured from the vertical, connecting the edge of the mining void to the surface expression of the lateral limit of subsidence (usually defined as less than 20 mm/m).</td>
</tr>
<tr>
<td>Aquifer</td>
<td>Underground water storage within either disturbed or undisturbed strata.</td>
</tr>
<tr>
<td>Aquitard / Aquiclude</td>
<td>Less permeable strata, not permeable enough to yield economic quantities of water.</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>A gaseous mass surrounding the planet Earth that is retained by Earth's gravity. It is divided into five layers. Most of the weather and clouds are found in the first layer.</td>
</tr>
<tr>
<td>Atmospheric stability</td>
<td>The tendency of the atmosphere to resist or enhance vertical motion.</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>The force per unit area exerted against a surface by the weight of air above that surface in the Earth's atmosphere.</td>
</tr>
<tr>
<td>Background</td>
<td>The condition (e.g. noise levels) already present in an area before the commencement of a specific activity.</td>
</tr>
<tr>
<td>Baseflow</td>
<td>The discharge of sub-surface water into a stream (i.e. groundwater seepages).</td>
</tr>
<tr>
<td>Baseline monitoring</td>
<td>Monitoring conducted over time to collect a body of information to define specific characteristics of an area (e.g. species occurrence or noise levels prior to commencement of a specific activity).</td>
</tr>
<tr>
<td>Biological diversity</td>
<td>The diversity of different species of plants, animals and micro-organisms, including the genes they contain, in the ecosystem of which they are part.</td>
</tr>
<tr>
<td>Bord and pillar mining</td>
<td>Method of underground coal mining where the coal seam is divided into regular block array (pillars) by driving headings and cut-throughs. In some cases, the pillars are removed in a concurrent or later operation.</td>
</tr>
<tr>
<td>Bore dewatering facility</td>
<td>A facility with a number of boreholes drilled from the surface to the coal seam and fitted with submersible pumps that enable the underground water to be transferred to the surface.</td>
</tr>
<tr>
<td>Caving</td>
<td>A collapse of the overburden or strata overlying the coal seam and occurs when the coal is extracted resulted in a goaf.</td>
</tr>
<tr>
<td>Catchment</td>
<td>The entire land area from which water rainfall runoff drains to a specific watercourse or water body.</td>
</tr>
<tr>
<td>Chain pillar</td>
<td>A block of coal left un-mined between two longwall panels. The chain pillar holds up the roof between panels while regular cut throughs allows the passage of air, materials and staff.</td>
</tr>
<tr>
<td>Clean water</td>
<td>Water that has not come into physical contact with disturbed areas coal or mined carbonaceous material.</td>
</tr>
<tr>
<td>Cliff line</td>
<td>Refers to sub-vertical rock slopes with heights > 20 m in. They are also usually longer than their height.</td>
</tr>
<tr>
<td>Climatological</td>
<td>The science dealing with climate and climatic phenomena.</td>
</tr>
<tr>
<td>Closure</td>
<td>The subsidence-induced reduction in distance between two valley sides.</td>
</tr>
<tr>
<td>Coal Handling and</td>
<td>A facility comprising a Coal Preparation Plant for the beneficiation of coal, and a conveyor system transport of product coal off-site.</td>
</tr>
<tr>
<td>Preparation Plant (CHPP)</td>
<td>A facility for the transport of coal off-site.</td>
</tr>
<tr>
<td>Coal Preparation Plant (CPP)</td>
<td>A facility where coal is beneficiated (washed) to improve coal quality and prepared for transport off-site.</td>
</tr>
<tr>
<td>Combustion</td>
<td>The process of thermal oxidation (burning). A chemical change accompanied by the production of heat and conversion of chemical species.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Continuous miner</td>
<td>The electric powered cutting machine used to form underground roadways by removing coal from the working face.</td>
</tr>
<tr>
<td>Conventional movements</td>
<td>Those smooth subsidence movements that can be explained and predicted by expected caving mechanisms in areas of consistent geology and topography.</td>
</tr>
<tr>
<td>Conveyor</td>
<td>Fixed mechanical apparatus consisting of a continuous moving belt used to transport coal from one place to another.</td>
</tr>
<tr>
<td>Critical width</td>
<td>Removal of a small area of coal will form a small void, into which the roof will rarely fracture sufficiently to subside the surface. This is commonly evident in bord and pillar mines, but is also the case if longwall panels were sufficiently narrow. As these panels widen, they reach a critical width, which is when goafing is sufficient to cause maximum possible surface subsidence. A sub-critical width panel is one which did not allow maximum subsidence.</td>
</tr>
<tr>
<td>Cross-section</td>
<td>A two-dimensional diagram of an object presented as if the object had been cut along its length.</td>
</tr>
<tr>
<td>Curvature</td>
<td>The difference in slope of two sections of land surface divided by half the sum of their lengths, usually measured as the inverse of the radius of curvature in 1 over kilometres. Curvature can be convex (hogging) or concave (sagging). Hogging causes compression of surface materials while sagging causes tension. The larger the radius or curvature (or the smaller the inverse), the smaller the potential for damage to rigid natural or built structures.</td>
</tr>
<tr>
<td>Depth of cover</td>
<td>The vertical thickness of rock and soil above the mining area.</td>
</tr>
<tr>
<td>Dewatering</td>
<td>Transfer of water from underground workings to the surface by a pump.</td>
</tr>
<tr>
<td>Development</td>
<td>The extraction of coal to produce underground roadways and headings, enabling access to future longwall extraction areas. Mains development extraction is undertaken using continuous miner units, which simultaneously bolt and dust the face (two major components of development) whilst cutting coal.</td>
</tr>
<tr>
<td>Dirty water</td>
<td>Water that has come into physical contact with coal, mined carbonaceous materials or otherwise contains an elevated sediment load.</td>
</tr>
<tr>
<td>Down dip</td>
<td>A direction that is downwards and parallel to the dip direction of the strata.</td>
</tr>
<tr>
<td>Dust deposition</td>
<td>Settling of particulate matter out of the air through gravitational effects (dry deposition) and scavenging by rain and snow (wet deposition).</td>
</tr>
<tr>
<td>Dispersion</td>
<td>The spreading and dilution of substances emitted in a medium (e.g. air or water) through turbulence and mixing effects.</td>
</tr>
<tr>
<td>Ecologically Sustainable Development (ESD)</td>
<td>Using, conserving and enhancing resources so that ecological processes, on which life depends, are maintained and the total quality of life, now and in the future, can be increased.</td>
</tr>
<tr>
<td>Ecosystem</td>
<td>An interacting system of animals, plants, other organisms and non-living parts of the environment.</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>A measure of concentration of dissolved salts in water.</td>
</tr>
<tr>
<td>Emission</td>
<td>The discharge of a substance into the environment.</td>
</tr>
<tr>
<td>Emission factor</td>
<td>A measure of the amount of a specific pollutant or material emitted by a specific process, fuel, equipment, or source based on activity data such as the quantity of fuel burnt, hours of operation or quantity of raw material consumed.</td>
</tr>
<tr>
<td>Emission inventory</td>
<td>A database that lists, by source, the amount of air pollutants discharged into the atmosphere from a facility over a set period or raw material consumed.</td>
</tr>
<tr>
<td>Environmental Study Area</td>
<td>Part of the Project Application Area, Environmental Study Areas (ESAs) are the areas within which the proposed infrastructure would be located.</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>The process by which water is transferred from the land to the atmosphere by evaporation from the soil and other surfaces.</td>
</tr>
<tr>
<td>Far-field movements</td>
<td>The measured horizontal movements due to mine-induced subsidence in areas above solid, un-mined coal.</td>
</tr>
<tr>
<td>Fossil fuel</td>
<td>A fuel such as coal, oil or gas, formed in the geological past from the remains of living populations.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Fugitive emissions</td>
<td>Pollutants which escape from an industrial process due to leakage, materials handling, transfer, or storage.</td>
</tr>
<tr>
<td>Goaf</td>
<td>The area of fractured rock within the mined out void. The process is referred to as goafing.</td>
</tr>
<tr>
<td>Greenhouse Gases</td>
<td>Gases with the potential to cause climate change (eg. Methane, carbon dioxide and other as listed in the National Greenhouse and Energy Reporting Act 2007). Expressed in terms of carbon dioxide equivalent.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>All waters occurring below the land surface derived from aquifers.</td>
</tr>
<tr>
<td>Hydrogeology</td>
<td>The area of geology that deals with the distribution and movement of groundwater in soils and rocks.</td>
</tr>
<tr>
<td>Infiltration</td>
<td>Natural flow of surface water through ground surfaces as a result of rainfall events.</td>
</tr>
<tr>
<td>Licensed Discharge Point</td>
<td>A location where water is discharged in accordance with conditions stipulated within the respective EPL issued under the NSW Protection of the Environment Operations Act 1997.</td>
</tr>
<tr>
<td>Longwall mining</td>
<td>A method of coal mining that employs large articulated hydraulic roof supports that provide a safe working environment while allowing a powered shearer to mechanically cut coal.</td>
</tr>
<tr>
<td>Longwall panel</td>
<td>A large block of coal marked out for extraction by longwall mining.</td>
</tr>
<tr>
<td>Long term stable</td>
<td>A standard of geotechnical and engineering design which results in negligible subsidence and long term stability.</td>
</tr>
<tr>
<td>Meteorological</td>
<td>The science that deals with the phenomena of the atmosphere, especially weather and weather conditions.</td>
</tr>
<tr>
<td>Non-conventional movements</td>
<td>Are irregular subsidence movements often associated with shallow depth of cover, abrupt changes in geology, steep topography or in valleys.</td>
</tr>
<tr>
<td>Permian Age</td>
<td>The youngest geological period of the Palaeozoic era, covering a span between approximately 290-250 million years.</td>
</tr>
<tr>
<td>Pillar failure</td>
<td>In most cases, the chain pillars will partially crush and deform but remain substantially intact and so support the strata above. In some cases, usually due to poor mine design, the chain pillars may totally fail, and in even rarer cases, adjacent chain pillars may sequentially fail.</td>
</tr>
<tr>
<td>Pollutant</td>
<td>A substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Strain</td>
<td>The changing tension or compression in rocks and soil. Strain is measured by the change in the horizontal distance between two points divided by the original horizontal distance between the points. If this distance increases, it shows tensile strain. If the distance decreases, it shows compressive strain. Strain can be estimated by multiplying predicted curvature by 10.</td>
</tr>
<tr>
<td>Subsidence</td>
<td>The difference between the pre-mining surface level and the post-mining surface level at a point.</td>
</tr>
<tr>
<td>Surface Water</td>
<td>Water that is derived from precipitation or pumped from underground and may be stored in dams, rivers, creeks and drainage lines.</td>
</tr>
<tr>
<td>Tilt</td>
<td>The change in ground slope measured by the difference in height of two points divided by their distance apart, usually measured in mm/m. Positive tilt is defined as being tilt towards the direction of measurement.</td>
</tr>
<tr>
<td>Underground roadways</td>
<td>Headings, roadways and cut-throughs mined using continuous miners (development activities) which are designed to be long term stable from a subsidence perspective. The surface subsidence from forming underground roadways is typically undetectable.</td>
</tr>
<tr>
<td>Up dip</td>
<td>A direction that is upwards and parallel to the dip direction of the strata.</td>
</tr>
<tr>
<td>Ventilation shaft</td>
<td>A vertical passageway from the mine workings to the surface which conveys fresh airflow into the mine or expels used air from the mine.</td>
</tr>
<tr>
<td>Western Coal Services Project</td>
<td>The project that will manage the handling and transport logistics of ROM coal from Springvale pit top (and Angus Place Colliery) to Wallerawang and Mount Piper Power Stations and Springvale Coal Services Site.</td>
</tr>
<tr>
<td>Wind erosion</td>
<td>Detachment and transportation of loose topsoil or sand due to action by the wind.</td>
</tr>
<tr>
<td>Wind rose</td>
<td>A meteorological diagram depicting the distribution of wind direction and speed at a location over a period of time.</td>
</tr>
</tbody>
</table>
ACRONYMS, UNITS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>%ile</td>
<td>Percentile</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>AADT</td>
<td>Annual average daily traffic</td>
</tr>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>AEMR</td>
<td>Annual Environmental Management Report</td>
</tr>
<tr>
<td>AGL</td>
<td>Above ground level</td>
</tr>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>AHIMS</td>
<td>Aboriginal Heritage Information Management System</td>
</tr>
<tr>
<td>ANZECC</td>
<td>Australian and New Zealand Environment Conservation Council</td>
</tr>
<tr>
<td>AWS</td>
<td>Automatic weather station</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology</td>
</tr>
<tr>
<td>CCL</td>
<td>Consolidated Coal Lease</td>
</tr>
<tr>
<td>CEMP</td>
<td>Construction Environmental Management Plan</td>
</tr>
<tr>
<td>CH4</td>
<td>Methane</td>
</tr>
<tr>
<td>CHP</td>
<td>Coal Handling Plant</td>
</tr>
<tr>
<td>CL</td>
<td>Coal Lease</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CMA</td>
<td>Catchment Management Authority</td>
</tr>
<tr>
<td>CH4</td>
<td>Methane</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO2e</td>
<td>Carbon dioxide equivalent</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>dB(A)</td>
<td>Decibels, A weighted (a filter has been applied to the measured result to</td>
</tr>
<tr>
<td></td>
<td>mimic the human response to noise</td>
</tr>
<tr>
<td>DoE</td>
<td>Federal Department of the Environment (formerly SEWPaC)</td>
</tr>
<tr>
<td>DEC</td>
<td>Department of Environment and Conservation (NSW)</td>
</tr>
<tr>
<td>DECC</td>
<td>Department of Environment and Climate Change (NSW)</td>
</tr>
<tr>
<td>DECCW</td>
<td>(Former) Department of Environment, Climate Change and Water (NSW)</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>DEUS</td>
<td>Department of Energy Utilities and Sustainability (USA)</td>
</tr>
<tr>
<td>DGRs</td>
<td>Director General’s Requirements</td>
</tr>
<tr>
<td>DoP</td>
<td>(Former) Department of Planning</td>
</tr>
<tr>
<td>DP&I</td>
<td>Department of Planning and Infrastructure (NSW)</td>
</tr>
<tr>
<td>DRE</td>
<td>Division of Resources and Energy (within DTIRIS)</td>
</tr>
<tr>
<td>DTIRIS</td>
<td>Department of Trade & Investment, Regional Infrastructure and Services (NSW)</td>
</tr>
<tr>
<td>EEC</td>
<td>Endangered Ecological Community</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EL</td>
<td>Exploration Licence</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EP&A Act</td>
<td>Environmental Planning and Assessment Act 1979 (NSW)</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Authority</td>
</tr>
<tr>
<td>EP&A Regulation</td>
<td>Environmental Planning and Assessment Regulation 2000</td>
</tr>
<tr>
<td>EPBC Act</td>
<td>Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth)</td>
</tr>
<tr>
<td>EPL</td>
<td>Environment Protection Licence</td>
</tr>
<tr>
<td>ESD</td>
<td>Ecologically Sustainable Development</td>
</tr>
<tr>
<td>FM Act</td>
<td>Fisheries Management Act 1994 (NSW)</td>
</tr>
<tr>
<td>FMA Act</td>
<td>Fisheries Management Amendment Act 1997 (NSW)</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g/m²/month</td>
<td>grams per square metre per month</td>
</tr>
<tr>
<td>GDE</td>
<td>Groundwater Dependent Ecosystem</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GJ</td>
<td>Gigajoule</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>GPS</td>
<td>Geographic Positioning System</td>
</tr>
<tr>
<td>GSSE</td>
<td>GSS Environmental</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>INP</td>
<td>Industrial Noise Policy</td>
</tr>
<tr>
<td>Infrastructure SEPP</td>
<td>State Environmental Planning Policy (Infrastructure) 2007</td>
</tr>
<tr>
<td>IPCC</td>
<td>International Panel on Climate Change</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kL</td>
<td>kilolitre</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometre</td>
</tr>
<tr>
<td>LCC</td>
<td>Lithgow City Council</td>
</tr>
<tr>
<td>LDP</td>
<td>Licensed Discharge Point</td>
</tr>
<tr>
<td>LEP</td>
<td>Local Environmental Plan</td>
</tr>
<tr>
<td>LGA</td>
<td>Local Government Area</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>M</td>
<td>million</td>
</tr>
<tr>
<td>m/s</td>
<td>Metres per second</td>
</tr>
<tr>
<td>m²</td>
<td>Square metre</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic metre</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per litre</td>
</tr>
<tr>
<td>ML</td>
<td>Megalitre</td>
</tr>
<tr>
<td>MLA</td>
<td>Mining Lease Application</td>
</tr>
<tr>
<td>MNES</td>
<td>Matter of National Environmental Significance</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mm/m</td>
<td>millimetre per metre</td>
</tr>
<tr>
<td>MOP</td>
<td>Mining Operations Plan</td>
</tr>
<tr>
<td>Mt</td>
<td>Million tonne</td>
</tr>
<tr>
<td>Mtpa</td>
<td>Million tonnes per annum</td>
</tr>
<tr>
<td>NES</td>
<td>National Environmental Significance</td>
</tr>
<tr>
<td>NEPM</td>
<td>National Environment Protection Measure</td>
</tr>
<tr>
<td>NPI</td>
<td>National Pollutant Inventory (Australia)</td>
</tr>
<tr>
<td>NGA</td>
<td>National Greenhouse Account</td>
</tr>
<tr>
<td>NGER Act</td>
<td>National Greenhouse and Energy Reporting Act 2007</td>
</tr>
<tr>
<td>NoW</td>
<td>NSW Office of Water</td>
</tr>
<tr>
<td>NPW Act</td>
<td>National Parks and Wildlife Act 1974</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>NPI</td>
<td>National Pollution Inventory</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>NP&W Act</td>
<td>National Parks and Wildlife Act 1974</td>
</tr>
<tr>
<td>NPWS</td>
<td>National Parks and Wildlife Service</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>OEH</td>
<td>NSW Office of Environment and Heritage</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal – a unit of pressure</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Particulate matter less than 10 microns</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Particulate matter with an aerodynamic diameter of 10 microns or less</td>
</tr>
<tr>
<td>PRP</td>
<td>Pollution Reduction Programme</td>
</tr>
<tr>
<td>RBL</td>
<td>Rated Background Level</td>
</tr>
<tr>
<td>RMS</td>
<td>NSW Roads and Maritime Service (former RTA)</td>
</tr>
<tr>
<td>ROM</td>
<td>Run of Mine (unwashed coal output)</td>
</tr>
<tr>
<td>RPS</td>
<td>RPS Australia East Pty Ltd</td>
</tr>
<tr>
<td>RTA</td>
<td>NSW Roads and Traffic Authority (now RMS)</td>
</tr>
<tr>
<td>SAL</td>
<td>Strategic Agricultural Land</td>
</tr>
<tr>
<td>SDWC</td>
<td>Sydney Drinking Water Catchment</td>
</tr>
<tr>
<td>SDWTS</td>
<td>Springvale – Delta Water Transfer Scheme</td>
</tr>
<tr>
<td>SEPP</td>
<td>State Environmental Planning Policy</td>
</tr>
<tr>
<td>SEWPaC (now DoE)</td>
<td>The former Department of Sustainability, Environment, Water, Population and Communities (Commonwealth), now Department of the Environment</td>
</tr>
<tr>
<td>SF<sub>6</sub></td>
<td>Sulphur hexafluoride</td>
</tr>
<tr>
<td>SLR</td>
<td>SLR Consulting Australia Pty Ltd.</td>
</tr>
<tr>
<td>SMP</td>
<td>Subsidence Management Plan</td>
</tr>
<tr>
<td>SoC</td>
<td>Statement of Commitments</td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
</tr>
<tr>
<td>subsp.</td>
<td>sub-species</td>
</tr>
<tr>
<td>SPL</td>
<td>Sound Power Level</td>
</tr>
<tr>
<td>SWMP</td>
<td>Site Water Management Plan</td>
</tr>
<tr>
<td>t</td>
<td>Tonne</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TEC</td>
<td>Threatened Ecological Community</td>
</tr>
<tr>
<td>TEOCM</td>
<td>Tapered element oscillating microbalance</td>
</tr>
<tr>
<td>THPSS</td>
<td>Temperate highland peat swamps on sandstone</td>
</tr>
<tr>
<td>TSC Act</td>
<td>Threatened Species Conservation Act 1995</td>
</tr>
<tr>
<td>TSP</td>
<td>Total Suspended Particulates</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>WM Act</td>
<td>Water Management Act 2000</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µg/m<sup>3</sup></td>
<td>Microgram per cubic metre</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre or micron</td>
</tr>
</tbody>
</table>
Table of Contents

1.0 INTRODUCTION .. 2
 1.1 Background .. 2
 1.2 The Applicant .. 6
 1.3 Document Purpose .. 6
 1.4 Document Structure ... 6
 1.5 Overview of the Project .. 9
 1.6 Director General’s Requirements .. 10
 1.7 Approval Process and Indicative Timeline .. 19
 1.8 Interaction with Centennial Projects in the Western Coalfield ..
 1.8.1 Introduction ... 21
 1.8.2 The Angus Place Mine Extension Project ... 22
 1.8.2.1 Summary of Project ... 22
 1.8.2.2 Implications for the Existing Planning Approvals ... 23
 1.8.3 The Springvale Mine Extension Project .. 23
 1.8.3.1 Summary of Project ... 23
 1.8.3.2 Implications for the Existing Planning Approvals ... 24
 1.8.4 The Western Coal Services Project .. 25
 1.8.4.1 Summary of Project ... 25
 1.8.4.2 Implications for the Existing Planning Approvals ... 26
 2.0 SITE DESCRIPTION .. 28
 2.1 Site Location ... 28
 2.2 Project Application Area .. 28
 2.3 Landscape Features ... 30
 2.4 Study Areas .. 34
 2.4.1 Subsidence Impact Assessment .. 34
 2.4.2 Terrestrial Ecology Impact Assessment .. 34
 2.4.3 Visual Impact Assessment .. 36
 2.4.4 Exploration Activities .. 36
 2.5 Land Use and Ownership .. 36
 2.5.1 Land Use .. 36
 2.5.1.1 Land Use in the Vicinity .. 36
 2.5.1.2 Land Use in the Project Application Area .. 36
2.5.2 Land Ownership 39
2.5.3 Land Zoning .. 39
2.5.4 Nearest Sensitive Receptors ... 39
2.6 Soils and Geology... 43
2.6.1 Soils and Land Capability .. 43
2.6.2 Geology and Hydrogeology ... 43
2.6.2.1 Generalised Stratigraphy ... 43
2.6.2.2 Geological Structures .. 48
2.6.2.3 Newnes Plateau Geology Related to Swamp Formation ... 50
2.6.2.4 Major Geological Structure Zones .. 55
2.6.2.5 Hydrogeology 59
2.6.2.6 Groundwater Response to Longwall Mining .. 60
2.6.2.7 Summary of Historical Impacts to Swamps from Mining Related Activities 86
2.7 Hydrology ... 87
2.8 Ecology ... 89
2.8.1 Habitat ... 89
2.8.2 Threatened Flora and Fauna .. 89
2.8.3 Endangered Ecological Communities and Swamps ... 90
2.8.3.1 MU50 – Newnes Plateau Shrub Swamps .. 92
2.8.3.2 MU51 – Newnes Plateau Hanging Swamps .. 94
2.8.3.3 MU52 – Newnes Plateau Rush – Sedge Snow Gum Hollow Wooded Heath 97
2.8.3.4 MU11 - Tablelands Snow Gum, Black Sallee, Candlebark and Ribbon Gum Grassy Woodland 97
2.8.3.5 Past Undermining of Swamps ... 99
2.8.4 Enforceable Undertaking... 99
2.8.5 Aquatic Ecology 100
2.8.6 Stygofauna .. 100
2.9 Climate ... 101
2.9.1 Data Sources .. 101
2.9.2 Rainfall .. 101
2.9.3 Temperature and Humidity .. 102
2.9.4 Wind.. 103
2.9.5 Evapotranspiration ... 104
2.9.6 Atmospheric Stability Classes and Temperature Inversion... 104
3.0 EXISTING MINE OPERATIONS .. 108

3.1 Existing Approvals .. 108

3.1.1 Development Consents and EPBC Act Approval .. 108

3.1.2 Other Regulatory Requirements .. 110

3.1.3 Mining Tenements .. 112

3.1.4 Evolution of Mine Design .. 114

3.2 Exploration Programme ... 117

3.3 Land Preparation .. 117

3.4 Hours of Operation and Workforce .. 118

3.5 Site Access ... 118

3.6 Mining ... 119

3.6.1 Mining Method .. 119

3.6.2 Mining Sequence .. 119

3.7 Coal Handling, Processing, Stockpiles and Transport .. 119

3.7.1 Coal Handling and Stockpiling at Springvale Pit Top .. 119

3.7.2 Coal Handling, Processing and Stockpiling at Springvale Coal Services Site ... 120

3.7.3 Coal Transport ... 124

3.8 Plant and Equipment ... 125

3.9 Mine Support Facilities and Underground Access ... 125

3.9.1 Underground Mine Access ... 125

3.9.2 Workshop, Services and Administration Infrastructure .. 125

3.10 Infrastructure ... 126

3.10.1 Water Management Infrastructure ... 126

3.10.2 Pollution Control Infrastructure .. 126

3.10.3 Other Infrastructure .. 127

3.10.4 Non-mine Owned Infrastructure ... 130

3.11.1 Licensed Discharge Points ... 132

3.11.2 Surface Water Management ... 132

3.11.2.1 Surface Water Management at Springvale Pit Top ... 136

3.11.2.2 Surface Water Management at Springvale Coal Services Site ... 136

3.11.2.3 Surface Water Management within Newnes Plateau Infrastructure Sites 137

3.11.3 Underground Water Management ... 137

3.11.4 Site Water Requirements – Existing .. 137
3.11.5 Potable Water ... 138
3.11.6 Wastewater Collection and Treatment .. 138
3.12 Waste Management .. 139
3.13 Environmental Management ... 139
3.13.1 Introduction ... 139
3.13.2 Centennial Environmental Policy .. 139
3.13.3 Environmental Management System and Management Plans .. 139
3.13.4 Monitoring and Reporting .. 142
3.13.5 Audits and Continuous Improvements .. 145
3.13.6 Pollution Incident Response Management Plan .. 145
3.13.7 Pollution Reduction Program .. 146
3.13.8 Persoonia Hindii Management and Research Program .. 146
3.14 Rehabilitation and Final Landform .. 147

4.0 PROJECT DESCRIPTION ... 150
4.1 Overview ... 150
4.2 Exploration Programme .. 157
4.3 Land Preparation .. 158
4.4 Hours of Operation, Workforce and Project Life ... 159
4.5 Site Access ... 159
4.6 Mining ... 159
4.6.1 Mining Method .. 159
4.6.2 Mining Sequence .. 160
4.7 Coal Handling, Processing, Stockpiles and Transport .. 160
4.8 Mine Support Facilities and Underground Access .. 160
4.8.1 Underground Mine Access .. 160
4.8.2 Workshop, Services and Administration Infrastructure .. 161
4.9 Infrastructure .. 161
4.9.1 Water Management Infrastructure ... 161
4.9.2 Pollution Control Infrastructure .. 161
4.9.3 Other Infrastructure ... 161
4.9.4 Non-mine Owned Infrastructure .. 163
4.10 Water Management .. 163
4.10.1 Licensed Discharge Points .. 165
4.10 Water Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10.2 Surface Water Management</td>
<td>165</td>
</tr>
<tr>
<td>4.10.3 Underground Water Management</td>
<td>165</td>
</tr>
<tr>
<td>4.10.4 Site Water Requirements – Proposed</td>
<td>166</td>
</tr>
<tr>
<td>4.10.5 Potable Water</td>
<td>166</td>
</tr>
<tr>
<td>4.10.6 Wastewater Collection and Treatment</td>
<td>166</td>
</tr>
<tr>
<td>4.11 Waste Management</td>
<td>166</td>
</tr>
<tr>
<td>4.12 Environmental Management</td>
<td>167</td>
</tr>
<tr>
<td>4.13 Rehabilitation and Final Landform</td>
<td>167</td>
</tr>
<tr>
<td>4.13.1 Progressive Rehabilitation</td>
<td>167</td>
</tr>
<tr>
<td>4.13.2 Life of Mine Rehabilitation</td>
<td>167</td>
</tr>
</tbody>
</table>

5.0 Planning Considerations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Approval Pathway and Permissibility</td>
<td>170</td>
</tr>
<tr>
<td>5.2 Commonwealth Legislation</td>
<td>170</td>
</tr>
<tr>
<td>5.2.1 Environment Protection and Biodiversity Conservation Act 1999</td>
<td>170</td>
</tr>
<tr>
<td>5.2.2 Native Title Act 1993</td>
<td>171</td>
</tr>
<tr>
<td>5.2.3 National Greenhouse and Energy Reporting Act 2007</td>
<td>171</td>
</tr>
<tr>
<td>5.3 NSW State Legislation</td>
<td>171</td>
</tr>
<tr>
<td>5.3.1 Environmental Planning and Assessment Act 1979</td>
<td>171</td>
</tr>
<tr>
<td>5.3.2 Other Key NSW State Legislation</td>
<td>174</td>
</tr>
<tr>
<td>5.4 State Environmental Planning Policies</td>
<td>176</td>
</tr>
<tr>
<td>5.4.1 SEPP (State and Regional Development) 2011</td>
<td>176</td>
</tr>
<tr>
<td>5.4.2 SEPP (Mining, Petroleum Production and Extractive Industries) 2007</td>
<td>176</td>
</tr>
<tr>
<td>5.4.3 SEPP (Infrastructure) 2007</td>
<td>176</td>
</tr>
<tr>
<td>5.4.4 SEPP No. 55 – Remediation of Land</td>
<td>177</td>
</tr>
<tr>
<td>5.4.5 SEPP No. 44 – Koala Habitat Protection</td>
<td>177</td>
</tr>
<tr>
<td>5.4.6 SEPP No. 33 – Hazardous and Offensive Development</td>
<td>178</td>
</tr>
<tr>
<td>5.4.7 SEPP (Sydney Drinking Water Catchment) 2011</td>
<td>178</td>
</tr>
<tr>
<td>5.5 Local Environmental Plans</td>
<td>179</td>
</tr>
<tr>
<td>5.5.1 Lithgow City Local Environmental Plan 1994</td>
<td>179</td>
</tr>
<tr>
<td>5.5.2 Draft Lithgow City Local Environmental Plan 2013</td>
<td>181</td>
</tr>
<tr>
<td>5.6 Other Considerations</td>
<td>182</td>
</tr>
<tr>
<td>5.6.1 Lithgow Land Use Strategy 2010-2030</td>
<td>182</td>
</tr>
<tr>
<td>5.6.2 Water Sharing Plans</td>
<td>182</td>
</tr>
</tbody>
</table>
5.6.3 Strategic Regional Land Use Policy ... 182
5.6.4 NSW Aquifer Interference Policy ... 183

6.0 SOCIO-ECONOMIC ANALYSIS .. 186

6.1 Social Assessment ... 186
6.1.1 Methodology .. 186
6.1.2 Profiling ... 187
6.1.3 Scoping .. 188
6.1.4 Social Impact Assessment ... 190
6.1.5 Management .. 190
6.1.6 Monitoring .. 192

6.2 Economic Assessment ... 193
6.2.1 Methodology .. 193
6.2.2 Social and Economic Benefits and Costs ... 193
6.2.3 Estimated Economic Benefits ... 194
6.2.4 Estimation of Economic Costs ... 195
6.2.5 Net Present Value .. 196
6.2.6 Net Contribution of the Mining Sector .. 196
6.2.7 Employment Multipliers ... 197
6.2.8 Alternatives Considered .. 198
6.2.9 Conclusion ... 198

7.0 STAKEHOLDER ENGAGEMENT ... 200

7.1 Introduction ... 200
7.2 Engagement Strategy and Stakeholder Identification 201
7.2.1 Engagement Strategy .. 201
7.2.2 Stakeholder Identification ... 201
7.3 Springvale Mine Stakeholder Engagement Plan ... 202
7.4 Outcome of Community Consultation .. 204
7.4.1 Lithgow Regional Forum: 25 February 2011 ... 204
7.4.2 Centennial Coal Community Information Sessions 205
7.4.3 Consultations Relating to Social Impact Assessment 206
7.4.4 Key Themes Emerging from Consultation .. 206
7.5 Consultation with Non-Government Organisations ... 207
7.5.1 Blue Mountains Conservation Society and the Colong Foundation for Wilderness .. 207
ENVIRONMENTAL IMPACT STATEMENT
SPRINGVALE MINE EXTENSION PROJECT

7.5.2 Greater Blue Mountains World Heritage Area Advisory Committee .. 210
7.6 Aboriginal Stakeholders .. 210
7.7 Consultation with Energy Australia .. 211
7.8 Government Agency Consultation ... 211
7.9 Feedback on Stakeholder Engagement ... 217
7.10 Conclusion .. 217

8.0 MINE DESIGN AND SUBSIDENCE .. 220
8.1 Introduction ... 220
8.2 Mine Design Constraints ... 220
8.2.1 Geotechnical Constraints .. 221
8.2.2 Monitoring Data Used to Understand Effects of Major Geological Structure Zones in Mine Subsidence ... 224
8.2.3 Narrow Swamp ... 228
8.2.4 East Wolgan Swamp ... 231
8.2.5 Comparison of Mining Related Activities at Narrow Swamp and East Wolgan Swamp 231
8.2.6 Sensitive Surface Features ... 232
8.3 Previous Subsidence and Development of Current Mine Plan and Design .. 236
8.3.1 Definitions ... 236
8.3.2 Methodology ... 239
8.3.3 Evolution of Mine Design and Subsidence .. 239
8.3.4 Alternative Mining Layouts .. 242
8.3.5 Reliability of Subsidence Predictions and Previous Subsidence ... 243
8.3.6 Current Mine Plan and Design .. 245
8.4 Subsidence Predictions for the Proposed Mining Areas ... 245
8.5 Subsidence Impact Assessment .. 251
8.6 Subsidence Management and Mitigation Measures ... 251
8.7 Conclusion .. 253

9.0 IDENTIFICATION OF KEY ENVIRONMENTAL ISSUES .. 256
9.1 Introduction and Objectives ... 256
9.2 Proposed Activities with the Potential to Cause Environmental Impacts .. 257
9.3 Risk Assessment ... 257
9.3.1 Broad Brush Risk Assessment ... 259
9.3.2 Subsidence Constraints Risk Assessment .. 262
9.4 Assessment of Environmental, Social and Economic Consequences ... 267

10.0 ASSESSMENT AND MANAGEMENT OF KEY ENVIRONMENTAL ISSUES ... 272

10.1 Landscape Features .. 272
10.1.1 Cliffs .. 272
10.1.1.1 Existing Environment .. 272
10.1.1.2 Potential Impacts ... 272
10.1.1.3 Consequences of Potential Impacts .. 272
10.1.1.4 Monitoring .. 272
10.1.2 Pagodas .. 272
10.1.2.1 Existing Environment .. 272
10.1.2.2 Potential Impacts ... 273

The predicted maximum strains for the pagodas are 1.5 mm/m tensile and 0.5 mm/m compressive and no spalling or cracking is predicted. .. 273
10.1.2.3 Consequences of Potential Impacts .. 273
10.1.2.4 Monitoring .. 273
10.1.3 Watercourses .. 273
10.1.3.1 Existing Environment .. 273
10.1.3.2 Potential Impacts ... 274
10.1.3.3 Consequences of Potential Impacts .. 274
10.1.3.4 Monitoring .. 274
10.1.4 World Heritage Areas, National Heritage Places and National Parks .. 274
10.1.4.1 Existing Environment .. 274
10.1.4.2 Potential Impacts ... 275
10.1.4.3 Consequences of Potential Impacts .. 275
10.1.5 Newnes Plateau Swamps ... 275
10.1.5.1 Existing Environment .. 275
10.1.5.2 Potential Impacts ... 275
10.1.5.3 Consequences of Potential Impacts .. 275

10.2 Water Management .. 278
10.2.1 Introduction and Background ... 278
10.2.2 Existing Environment ... 279
10.2.2.1 Surface Water System ... 279
10.2.2.2 Groundwater System .. 280
10.2.2.3 Water Sharing Plans and Licensing ... 287
10.2.2.4 Existing Monitoring Network and Overview .. 287
10.2.3 Water Management Impact Assessment .. 293
10.2.3.1 Groundwater Assessment .. 296
10.2.3.2 Surface Water Assessment .. 305
10.2.3.3 Subsidence Impact Assessment .. 306
10.2.4 Consequences of Potential Water Management Impacts 308
10.2.4.1 Impacts to Water Quality ... 310
10.2.4.2 Impacts to Geomorphology and Flooding .. 322
10.2.4.3 Impacts of Subsidence .. 323
10.2.5 Water Management and Mitigation Measures .. 323
10.2.6 Conclusions .. 324
10.3 Ecology .. 325
10.3.1 Introduction .. 325
10.3.2 Methodology .. 325
10.3.2.1 Terrestrial Ecology .. 325
10.3.2.2 Aquatic Ecology .. 328
10.3.3 Existing Environment ... 328
10.3.3.1 Terrestrial Ecology .. 328
10.3.3.2 Aquatic ecology .. 342
10.3.3.3 Stygofauna .. 348
10.3.4 Potential Impacts .. 349
10.3.4.1 Terrestrial Ecology .. 349
10.3.4.2 Aquatic Ecology .. 354
10.3.4.3 Stygofauna .. 356
10.3.5 Consequences of Impacts .. 358
10.3.5.2 Stygofauna .. 369
10.3.6 Cumulative Impacts ... 369
10.3.6.1 Terrestrial Ecology .. 369
10.3.6.2 Aquatic Ecology .. 370
10.3.6.3 Stygofauna .. 371
10.3.7 Biodiversity Strategy .. 371
10.3.8 Mitigation and Management Measures .. 380
10.3.9 Conclusion .. 383

10.4 Heritage .. 384
10.4.1 Introduction ... 384
10.4.2 Consultation ... 384
10.4.3 Existing Environment .. 385
10.4.4 Aboriginal Heritage Impact Assessment ... 393
10.4.5 Consequences of Potential Aboriginal Heritage Impacts ... 394
10.4.6 Management and Mitigation Measures ... 395
10.4.7 Conclusion .. 396

10.5 Road Traffic and Transport ... 397
10.5.1 Introduction ... 397
10.5.2 Existing Road Traffic Environment .. 398
10.5.2.1 Pit Top ... 398
10.5.2.2 Newnes Plateau... 399
10.5.3 Road Traffic Impact Assessment .. 402
10.5.3.1 Springvale Pit Top ... 402
10.5.3.2 Newnes Plateau... 402
10.5.3.3 Cumulative Impacts ... 403
10.5.4 Consequence of Potential Road Traffic Impacts ... 404
10.5.4.1 Springvale Pit Top ... 404
10.5.4.2 Newnes Plateau... 404
10.5.5 Road Traffic Management and Mitigation Measures ... 404
10.5.6 Conclusion .. 405

10.6 Noise .. 406
10.6.1 Introduction ... 406
10.6.2 Existing Environment .. 406
10.6.3 Methodology ... 407
10.6.4 Noise Impact Assessment ... 409
10.6.4.1 Construction Noise .. 409
10.6.4.2 Operational Noise .. 411
10.6.4.3 Cumulative Noise ... 415
10.6.4.4 Off-Site Transport Noise .. 415
10.6.5 Consequences of Potential Noise Impacts .. 416
10.6.5.1 Construction Noise .. 416
10.6.5.2 Operational Noise .. 416
10.6.5.3 Cumulative Noise Assessment .. 416
10.6.5.4 Off-Site Transport Noise .. 416
10.6.6 Noise Management and Mitigation Measures ... 417
10.6.7 Conclusion .. 418
10.7 Air Quality Management ... 419
10.7.1 Introduction ... 419
10.7.2 Existing Environment .. 420
10.7.2.1 Suspended Particulate Matter ... 420
10.7.2.3 Adopted Background Air Quality Levels .. 420
10.7.2.4 Sensitive Receptors ... 421
10.7.3 Air Quality Impact Assessment ... 421
10.7.3.1 Cumulative Impacts ... 430
10.7.4 Consequences of Potential Air Quality Impacts .. 430
10.7.5 Air Quality Management and Mitigation Measures .. 431
10.7.6 Conclusion .. 431
10.8 Greenhouse Gas Management .. 432
10.8.1 Introduction ... 432
10.8.2 Existing Environment .. 433
10.8.2.1 Greenhouse Gas Emission Sources .. 433
10.8.3 Greenhouse Gas Impact Assessment ... 434
10.8.4 Consequences of Potential GHG Impacts .. 435
10.8.5 Greenhouse Gas Mitigation Measures, Management and Monitoring .. 435
10.8.6 Conclusion .. 435
10.9 Soils, Land Capability and Agricultural Suitability ... 436
10.9.1 Introduction ... 436
10.9.2 Existing Environment .. 436
10.9.2.1 Soils ... 436
10.9.2.2 Land Capability ... 437
10.9.2.3 Agricultural Suitability ... 440
10.9.2.4 Land Use ... 440
10.9.3 Soil and Land Capability Impact Assessment ... 440
10.9.3.1 Soils ... 440
10.9.3.2 Land Capability .. 440
10.9.3.3 Agricultural Suitability ... 440
10.9.3.4 Land Use ... 441
10.9.4 Consequences of Potential Soil and Land Capability Impacts .. 441
10.9.5 Management and Mitigation Measures .. 441
10.9.6 Conclusion ... 442
10.10 Strategic Agricultural Land .. 443
10.10.1 Introduction ... 443
10.10.2 Existing Environment ... 443
10.10.3 Biophysical Strategic Agricultural Land Impact Assessment ... 444
10.10.4 Consequences of Potential Biophysical Strategic Agricultural Land Impacts 444
10.10.5 Management and Mitigation Measures ... 444
10.10.6 Conclusion ... 444
10.11 Life of Mine and Rehabilitation ... 445
10.11.1 General Rehabilitation Principles and Objectives ... 445
10.11.2 Conceptual Post-Mining Land Use ... 446
10.11.3 Conceptual Post-Mining Landform ... 450
10.11.4 Decommissioning and Rehabilitation Implementation .. 450
10.11.4.1 Progressive Rehabilitation .. 450
10.11.4.2 Life of Mine Rehabilitation .. 450
10.11.4.3 Integration with Surrounding Rehabilitation ... 453
10.11.5 Conclusion ... 456
10.12 Visual Amenity .. 457
10.12.1 Introduction ... 457
10.12.2 Existing Environment ... 457
10.12.2.1 Springvale Pit Top .. 457
10.12.2.2 Newnes Plateau .. 458
10.12.3 Visual Impact Assessment .. 459
10.12.3.1 Springvale Pit Top .. 459
10.12.3.2 Newnes Plateau .. 461
10.12.4 Consequences of Potential Visual Impacts .. 461
10.12.4.1 Springvale Pit Top .. 461
10.12.4.2 Newnes Plateau ... 462
10.12.5 Mitigation and Management Measures ... 462
10.12.6 Conclusion ... 462
10.13 Waste Management .. 463
10.13.1 Existing Waste Management ... 463
10.13.2 Proposed Waste Management .. 464
10.14 Hazards Management ... 466
10.14.1 Hazardous Material Management .. 466
10.14.2 Spontaneous Combustion ... 466
10.14.3 Hazardous Goods ... 466
10.14.4 Bush Fire ... 468
10.14.4.1 Existing Environment .. 468
10.14.4.2 Potential Impacts .. 468
10.14.4.3 Environmental Consequences ... 468
10.14.4.4 Mitigation Measures .. 468
10.14.5 Public Safety ... 470
10.14.6 Conclusion .. 470
11.0 STATEMENT OF COMMITMENTS .. 472
12.0 JUSTIFICATION AND CONCLUSION .. 478
12.1 Need for the Project .. 478
12.2 Environmental Impacts ... 478
12.3 Project Benefits .. 480
12.4 Project Alternatives ... 481
12.4.1 Mining Method ... 481
12.4.2 Mine Plan and Design ... 482
12.4.3 Alternative Surface Infrastructure Locations and Designs .. 483
12.4.4 Ancillary Infrastructure and Proposed Infrastructure Corridors .. 483
12.5 Ecologically Sustainable Development (ESD) .. 484
12.5.1 Application of the Principles of ESD to the Project ... 485
12.5.2 The Precautionary Principle .. 485
12.5.3 Social Equity, Inter-Generational Equity ... 486
12.5.4 Conservation of Biological Diversity and Ecological Integrity .. 487
12.5.4.1 Greenhouse Gas Emissions .. 487
12.5.4.2 Measures to Maintain or Improve the Biodiversity Values of the Surrounding Region 488

12.5.5 Improved Valuation and Pricing of Environmental Resource .. 488

12.6 Conclusions .. 488

REFERENCES.. 491
TABLES
Table 1.1: Structure and Content of the Environmental Impact Statement ... 6
Table 1.2 Director General’s Requirements for the Project ... 11
Table 1.3 Supplementary Director General’s Requirements .. 16
Table 1.4 Springvale Mine Approval Pathway and Indicative Timeline .. 19
Table 2.1: Coordinates of Key Infrastructure within the Project Application Area ... 28
Table 2.2: Zonings .. 39
Table 2.3: Sensitive Receptors ... 40
Table 2.4: Soil Landscape Units and Soil Types ... 43
Table 2.5: Regional Hydrostratigraphic Summary and Hydrogeological Components 46
Table 2.6 Causal Factors Leading to Impacts to East Wolgan Swamp ... 72
Table 2.7: Areas of Main Catchments and Sub-Catchments of Relevance to the Project 87
Table 2.8: Vegetation Communities within the Project Application Area .. 91
Table 2.9: Mining Geometries for Previously Extracted Longwalls at Angus Place Colliery and Springvale Mine 99
Table 2.10: Long Term Rainfall Summary (mm) at Lidsdale Station 63132 (1959 – 2013) 101
Table 2.11 Newnes Forest Centre Rainfall Data (mm) .. 102
Table 2.12 Average Monthly Temperature (°C) at Lithgow (Birdwood Street), Station 63224 103
Table 2.13 Seasonal Frequency of Occurrence of Wind Speed Intervals .. 104
Table 2.14 Average Daily Pan Evaporation (mm) from Bathurst Agricultural Station, Station 63005 104
Table 2.15 Atmospheric Stability Classes ... 104
Table 3.1: Existing Development Consent and EPBC Act Approval ... 109
Table 3.2 Other Regulatory Requirements for Operation .. 110
Table 3.3 Mining Tenements ... 113
Table 3.4 Variations in Void (or Panel) Width and Void Width to Cover Depth W/H Ratio 115
Table 3.5 SMP Approvals and Mine Design Refinement ... 116
Table 3.6 Annual Site Water Requirements – Existing ... 138
Table 3.7 Springvale Mine Environmental Management Plans .. 140
Table 4.1 Comparison of Existing Operations and the Project ... 150
Table 5.1 Objectives of the EP&A Act .. 172
Table 5.2 Relevant NSW State Legislation ... 174
Table 6.1: Lithgow Land Use Strategy and Potential Areas of Impact for Springvale Coal 187
Table 6.2: Summary of Findings to the Director General’s Requirements ... 192
Table 6.3: Estimate of Economic Benefit ... 194
Table 6.4: Estimate of Economic Costs of the Project .. 196
Table 6.5: Net Present Value ... 196
Table 6.6: Type 2A Multipliers – Mining and Services ... 197
Table 10.17 Mitigation Measures ... 381
Table 10.16 Summary of EPBC Assessment of Significance ... 364
Table 10.15 Summary of 7 Part Tests of Significance ... 359
Table 10.14 Water Quality Downstream of Eastern and Western Swamps .. 347
Table 10.13 Water Quality Downstream of Northern Swamps ... 347
Table 10.12 Instream Characteristics of Wolgan River and Carne Creek .. 346
Table 10.11 Water quality Instream Ecology .. 344
Table 10.10 Migratory Species Potentially Occurring within 10 km of the Project Application Area. 336
Table 10.9 Vegetation Communities within the Project Application Area ... 330
Table 10.8 Native Vegetation Communities in ESAs to be cleared ... 331
Table 10.7 Vegetation Communities within the Project Application Area .. 330
Table 10.6 Predicted Groundwater Licensing Requirements .. 304
Table 10.5 Ecological Survey Effort .. 326
Table 10.4a Summary of Water Quality Parameter Values- Groundwater, LDPs, River and Water Supply Reservoir ... 313
Table 10.4 Predicted Surface Water Licensing Requirements Due to Baseflow Reduction .. 304
Table 10.3 Predicted Change to Baseflow Contribution (Base Case Simulation) ... 302
Table 10.2a Predicted Average Change in Standing Groundwater Levels in Swamps/Streams before, during and after mining (Truncated Ramp 2 Simulation) .. 303
Table 10.2 Predicted Change to Baseflow Contribution (Base Case Simulation) ... 302
Table 10.1 Surface Water Monitoring Program across the Project Application Area .. 288
Table 9.4 Priority Risk– Subsidence Constraints Risk Assessment ... 263
Table 9.3 Priority Risk Categories for Management and Proposed Additional Controls – BBRA 260
Table 9.2 Issues Prioritisation Matrix ... 258
Table 9.1 Risk Allocation Considerations ... 258
Table 8.4 Hierarchy of Subsidence Management Controls ... 252
Table 8.1 Maximum Predicted Total Conventional Subsidence ... 245
Table 8.0 Maximum Predicted Total Conventional Subsidence ... 245
Table 7.5: Summary of Issues Raised at the Government Briefing Meeting ... 218
Table 7.4: Tools and Activities to encourage feedback ... 217
Table 7.3: Summary of Issues Raised at the Government Briefing Meeting (17 and 18 October 2012) and Additional Government Agency Consultation Meetings.. 216
Table 7.2: Summary of Consultation undertake with Government agencies ... 212
Table 7.1: Meetings with Blue Mountains Conservation Society and Colong Foundation for Wilderness 209
Table 7.0: Meetings with Blue Mountains Conservation Society and Colong Foundation for Wilderness 209
Table 6.7: Type 2A Multipliers – Construction... 197
Table 10.23 Springvale Pit Top Peak Period Trips

Table 10.24 Estimated Construction Vehicle Movements

Table 10.25 Compliance Noise Monitoring Results December 2010 to September 2012

Table 10.26 Project Specific Noise Criteria

Table 10.27 Predicted Construction Noise Levels

Table 10.28 Predicted Operational Intrusive Noise Levels

Table 10.29 Predicted Operational Amenity Noise Levels

Table 10.30 Noise Control Measures

Table 10.31 Air Quality Criteria

Table 10.32 Adopted Background Air Quality Levels

Table 10.33 Predicted Annual Average Dust Deposition Rates

Table 10.34 Predicted Annual Average TSP Concentrations

Table 10.35 Predicted Annual Average PM$_{10}$ Concentrations (µg/m3)

Table 10.36 Predicted 24 Hour Average PM$_{10}$ Concentrations During Construction

Table 10.37 Predicted 24 Hour Average PM$_{10}$ Concentrations During Operation

Table 10.38 Predicted 24 Hour Average PM$_{10}$ Concentrations During Rehabilitation

Table 10.39 Predicted 24-Hour and Annual Average PM$_{2.5}$ Concentrations

Table 10.40 Summary of Potential GHG Emissions

Table 10.41 Summary of Emissions Data

Table 10.42 Scope 1, 2 and 3 GHG Emissions (t CO$_2$-e)

Table 10.43 Soil Landscape Units

Table 10.44: Land and Soil Capability Classes

Table 10.45 Agricultural Suitability Class

Table 10.46 Recommended Soil Stripping Depths

Table 10.48 Domain Rehabilitation Objectives

Table 10.49 Conceptual Rehabilitation Success Criteria

Table 10.50 Significance of Visual Effect at Pit Top Receptors

Table 10.51 Significance of Visual Effects at Newnes Plateau Receptors

Table 10.52 Existing Waste Sources and Quantities

Table 10.53 Proposed Waste Volumes and Management Measures

Table 12.1 Summary of Environmental Impacts

Table 12.2 also summarises each option under further key performance indicators

Table 12.3 Avoidance Mapping Results
FIGURES

Figure 1.1: Regional Location Map .. 3
Figure 1.2: Springvale Mine and Development Consent Areas ... 4
Figure 1.3: Project Application Area ... 5
Figure 1.4: State Significant Development Assessment and Approval Pathway ... 20
Figure 1.5: Interrelated Centennial Coal Projects in the Western Coalfield ... 22
Figure 2.1 Existing Mining Tenements ... 29
Figure 2.2: Project Study Areas ... 35
Figure 2.3: Land Use and Ownership .. 37
Figure 2.4: Land Zoning ... 41
Figure 2.5: Sensitive Receptor Locations .. 42
Figure 2.6: Typical Stratigraphy (Palaris 2013a) ... 45
Figure 2.7: Mine Plan and Distribution of Swamps in Project Application Area .. 49
Figure 2.8: View of Carne Creek Shrub Swamps from 3D Geology Model ... 52
Figure 2.9: Burralow Formation Isopach Plan within Springvale Project Application Area 53
Figure 2.10 Cross Section through Geology and Topography of Narrow Swamp, East Wolgan Swamp and Sunnyside Swamp .. 54
Figure 2.11: Locations of Exploration Boreholes Used for Geological Modelling within Project Application Area .. 56
Figure 2.12: WE Cross Section showing consistency of thickness and extent of Mount York Claystone (red) and Burralow Aquitards YS4 & YS6 (blue & green) used in hydrogeological model (CSIRO, 2013) ... 57
Figure 2.13: Major Geological Structure Zones Identified in the Project Application Area 58
Figure 2.14: Hydrographs of periodically waterlogged swamp piezometers ... 62
Figure 2.15: Hydrographs of permanently waterlogged swamp piezometers .. 62
Figure 2.16: Mining Within Angle of Draw of Sunnyside Swamp .. 64
Figure 2.17 Hydrographs of Sunnyside Swamp piezometers .. 64
Figure 2.18: Surface Water Flows from Sunnyside and Carne West Swamps ... 65
Figure 2.19: Hydrographs of Swamp Piezometers at Junction Swamp with timing of longwall mining beneath the piezometers and Cumulative Rainfall Deviation .. 66
Figure 2.20: Hydrographs of East Wolgan Swamp Piezometers WE1 and WE2 showing the timing of mine water discharge and longwall mining as well as the cumulative rainfall deviation trend ... 68
Figure 2.21: Mine Water Discharge to East Wolgan and Narrow Swamps ... 69
Figure 2.22: Height of Fracturing Relative to Overlying Stratigraphy .. 74
Figure 2.23: Timing of Mine Water Discharges and Difference Between East Wolgan Downstream Flows - Sunnyside Swamp Downstream Flows (East Wolgan Swamp Seepage to Wolgan River) .. 74
Figure 2.24: Plan View of Transect Through Ridge Water Level Monitoring Bores .. 76
Figure 2.25: Hydrographs of Ridge Water Level Monitoring Bores Related to Timing of Mining 77
Figure 2.26: Cross Section Through Narrow Swamp and East Wolgan Swamp showing Topography, Geology, Mining Areas and Related Height of Connected Fracturing .. 78
Figure 2.27: Hydrographs of the swamp piezometers installed at Kangaroo Creek Swamp showing timing of longwall mining and cumulative rainfall deviation ... 83
Figure 2.28: Surface Water Catchments and Water Sharing Plan Boundaries .. 88
Figure 2.29: Distribution of Swamps Across the Project Application Area ... 93
Figure 2.30: Conceptual Cross Section Through Relevant Strata .. 96
Figure 2.31 Average Mean Monthly Rainfall and Temperatures (Maddox Lane, Lidsdale) .. 102
Figure 2.32 Wind Roses for the Project Site .. 105
Figure 3.1: Existing Workings and Infrastructure ... 121
Figure 3.2: Springvale Pit Top: Existing Surface Infrastructure ... 122
Figure 3.3: Surface Infrastructure at Springvale Coal Services Site .. 123
Figure 3.4 Ventilation Shaft No. 3 ... 128
Figure 3.5: Site Access Routes ... 131
Figure 3.6: Overall Water Management Schematic .. 133
Figure 3.7: Licensed Discharge Points .. 134
Figure 3.8: Clean and Dirty Water Flow Paths and Catchments .. 135
Figure 3.9 Environmental Monitoring Locations and Subsidence Monitoring .. 144
Figure 3.10: New Surface Infrastructure .. 155
Figure 4.1: Mine Plan ... 156
Figure 4.2: Dewatering Facility Concept Plan .. 164
Figure 4.3: Trending of telltale data at a roof movement monitoring site ... 224
Figure 4.4: Angus Place Colliery Geotechnical Hazard Plan for the 900 Area ... 226
Figure 4.5A: LIDAR Subsidence data draped over DTM topography and mine workings .. 227
Figure 4.5: Mine water discharge at Licensed Discharge Point 5 (Angus Place Colliery) compared to two downstream flow monitoring stations at Narrow Swamp ... 229
Figure 4.6: Hydrographs of the four piezometers in Narrow Swamp, together with timing of mine water discharges and cumulative rainfall deviation ... 230
Figure 4.7A: Key Sensitive Surface Features: Northern Longwalls .. 233
Figure 4.8 Zones in the Overburden (MSEC, 2013) .. 238
Figure 4.9 Conceptual Plans for Mine Design Options 1 .. 241
Figure 4.10 Maximum observed and maximum predicted total subsidence directly above the previously extracted longwalls at Angus Place and Springvale Collieries (source MSEC, 2013) .. 244
Figure 8.11 Predicted Profiles of Conventional Subsidence, Tilt and Curvature along Prediction Line S1 .. 247
Figure 8.12: Existing and Predicted Post Mining Levels and Grades .. 250
Figure 8.13 Predicted Subsidence Contours .. 246
Figure 8.14 Observed Surface Water Flow Rates (kL/d) – Sunnyside Swamp and Carne West Swamp .. 281
Figure 8.15 Correlation between the Occurrence of Shrub Swamp and Hanging Swamp and Burralow Formation Claystones – Narrow Swamp and East Wolgan Swamp .. 284
Figure 10.4: Correlation between the Occurrence of Shrub Swamp and Hanging Swamp and Burralow Formation Claystones – Sunnyside Swamp, Sunnyside East Swamp and Carne West Swamp................................. 285
Figure 10.5 Conceptual Hydrogeology and Hydrology of the Springvale Region... 286
Figure 10.6: Surface Water and Groundwater Monitoring Locations.. 289
Figure 10.7: Modelled Groundwater Level within the Burralow Formation (Aquifer Unit AQ6)... 291
Figure 10.8: Predicted Phreatic Surface Cross-Section: LW401 to LW417 (CSIRO, 2013).. 292
Figure 10.9: Modelled Groundwater Level within the Lithgow Seam (Aquifer Unit LTH)... 294
Figure 10.10 Time-Varying Piezometric Profiles at Springvale .. 295
Figure 10.11: Modelled Mine Water Make in the Site Water Balance .. 297
Figure 10.12: Modelled Drawdown within the Lithgow Seam (Aquifer Unit LTH) at end of Mining in 2025 299
Figure 10.13 Predicted Phreatic Surface Cross-Section: LW401 to LW417 (CSIRO, 2013).. 300
Figure 10.14 Modelled Drawdown within the Burralow Formation (Aquifer Unit AQ6) at end of Mining in 2025 301
Figure 10.15 Water Balance Predictions – 2013 to 2032 ... 307
Figure 10.16: Predicted Average Salinity in the Coxs River above Lake Wallace – 2013 to 2032 321
Figure 10.17: Vegetation Communities within Terrestrial Ecology Study Area.. 332
Figure 10.18: Location of Threatened Flora Species and Endangered Ecological Communities within Terrestrial Ecology Study Area.. 333
Figure 10.19: Location of Threatened Fauna Species within Terrestrial Study Area... 339
Figure 10.20: Aquatic Ecology and Stygofauna Monitoring Sites .. 343
Figure 10.21: Archaeological Sites across the Project Application Area.. 386
Figure 10.22: Access Routes to the Pit Top and Newnes Plateau .. 401
Figure 10.23: Daytime Operational Noise Contours (Calm Weather) ... 413
Figure 10.24: Evening and Night Time Operational Noise Contours (Adverse Weather) .. 414
Figure 10.25: Air Quality Impact Assessment for PM_{10}, PM_{2.5} and TSP Concentrations and Dust Deposition.............. 429
Figure 10.26: Land Capability .. 439
Figure 10.27: Primary Rehabilitation Domains .. 448
Figure 10.28: Conceptual Final Landform .. 449
Figure 10.29: Visual Receptor Locations .. 460
CHAPTER 1.0

Introduction
1.0 INTRODUCTION
This chapter provides an introduction to Springvale Mine, an overview of the Springvale Mine Extension Project (the Project) and the approval process for the Project. The purpose and content of the Environmental Impact Statement (EIS) prepared in support of the development application for the Project is presented.

1.1 Background
Springvale Mine is an existing underground coal mine producing high quality thermal coal which is supplied to both domestic and international markets. It is located 15 kilometres to the northwest of the regional city of Lithgow and 120 kilometres west-northwest of Sydney in New South Wales (NSW) (Figure 1.1).

DA 11/92 remains in force for Springvale Mine and authorizes the extraction of up to 4.5 million tonnes of run-of-mine (ROM) coal per annum within the existing mining lease area. Schedule 2, Condition 2 of the development consent DA 11/92 conditions states:

‘The duration of this consent is limited to twenty-one (21) years from the granting of the Coal Lease.’

The relevant ‘coal lease’ being referred to is Mining Lease (ML) 1326, which was issued on 28 September 1993. On this basis, the development consent would have expired on 28 September 2014. However, a modification to the consent (DA 11/92 Mod 4), approved on 5 December 2013, allows mining operations at Springvale Mine to be undertaken until 30 September 2015.

The DA 11//92 consent area, along with the areas of two other development consents (DA 326/02 and DA 461/02) also relevant to Springvale Mine, is shown in Figure 1.2.

A development consent is required to ensure Springvale Mine is mining within the Project Application Area (Figure 1.2) for a further 13 years from the date of consent with additional rehabilitation undertaken after this period.

Springvale Mine has long term contracts with the two local power stations: Wallerawang and Mount Piper. Coal is distributed to these sites via a dedicated and covered overland conveyor system connecting the Springvale pit top with both power stations, and the Springvale Coal Services Site, and Lidsdale Siding Rail Loading Facility. The international market is accessed via the Lidsdale Siding Rail Loading Facility.

The main components of Springvale Mine’s existing operations are an underground longwall mine (Figure 1.2), accessed via the Springvale pit top, and supporting surface infrastructure within the pit top area and on Newnes Plateau within the Newnes State Forest. The Newnes Plateau infrastructure areas are accessed for light vehicles via State Mine Gully Road located in north Lithgow, and Old Bells Line of Road though Clarence for light and heavy vehicles.

Springvale Mine is approved to employ a full time workforce of up to 310 employees.

Coal processing and distribution is managed at the Springvale Coal Services site (Figure 1.3). The operational management of Springvale Coal Services Site’s coal processing and transport facilities is currently approved within Springvale Mine’s existing consent (DA 11/92). An upgrade to the Springvale Coal Services site is currently being assessed by the Department of Planning and Infrastructure (DP&I) as the Western Coal Services Project (State Significant Development 12_5579). All operational management of coal processing and transport facilities currently approved within Springvale Mine’s existing consent will be undertaken by the Western Coal Services Project in the future, save for the transport of up to 50,000 tonnes per annum of coal from the Springvale pit top to local domestic customers by road haulage which is needed to be authorised by the development consent granted for the Project.
1.2 The Applicant
Springvale Mine is owned by Centennial Springvale Pty Limited (as to 50%) and Springvale SK Kores Pty Limited (as to 50%) as participants in the Springvale unincorporated joint venture. Springvale Mine is operated by Springvale Coal Pty Limited (Springvale Coal), for and on behalf of the Springvale joint venture participants.

Springvale Coal is the applicant for the Project. The relevant postal address is:
Springvale Coal Pty Limited
Level 18
BT Tower, 1 Market St
Sydney NSW 2000.

1.3 Document Purpose
The EIS has been prepared by Golder Associates Pty Ltd on behalf of Springvale Coal to support a development application for the continuation of underground longwall mining at Springvale Mine beyond the current development consent (DA 11/92) expiry date of 30 September 2015.

The EIS has been prepared in accordance with clauses 6 and 7, Schedule 2 of the Environmental Planning and Assessment Regulation 2000 and the Director General’s Requirements (DGRs), issued by the Department of Planning and Infrastructure on 6 November 2012, and Supplementary DGRs issued on 30 August 2013 in relation to referral EPBC 2013/6881, as detailed in Section 1.6.

The EIS has been prepared using a risk-based assessment approach to identify and evaluate environmental, social and economic aspects relevant to the Project. This has been achieved through a process of ongoing consultation with stakeholders from government agencies, industry, and the surrounding community, risk assessments to appropriately identify and scope risk, robust specialist technical assessments and mitigation and management measures as appropriate for the Project.

1.4 Document Structure
The EIS is provided in two volumes. Volume 1 is the main EIS document. It sets out the Project in the context of the existing and approved environment, planning considerations, key environmental issues, potential impacts, mitigation measures and residual impacts. It is informed by the technical assessments contained in Volume 2, and provides a concise, integrated summary of these specialist assessments.

The structure and content of the EIS is summarised in Table 1.1.

Table 1.1: Structure and Content of the Environmental Impact Statement

<table>
<thead>
<tr>
<th>Volume 1 Main EIS Document</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Preliminaries</td>
<td>Statement of Validity</td>
</tr>
<tr>
<td></td>
<td>Executive Summary</td>
</tr>
<tr>
<td></td>
<td>Glossary of Terms</td>
</tr>
<tr>
<td></td>
<td>Acronyms</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>Discusses the background to the Project.</td>
</tr>
<tr>
<td></td>
<td>Introduces the Project and the Applicant.</td>
</tr>
<tr>
<td></td>
<td>Provides the document structure.</td>
</tr>
<tr>
<td></td>
<td>Overview of the approval process, including the relevant milestones which must be met along the approval path.</td>
</tr>
</tbody>
</table>
Chapter 2: Site Description
- Describes the Project Application Area including general surrounds, proposed and existing mining areas.
- Identifies the main natural features and climatic conditions of the surrounding landscape, and includes an overview of land ownership and use in the vicinity of the Project Application Area.
- Includes monitoring data and other relevant information, sourced from Springvale Mine and Angus Place Colliery, as relevant to the Project and history of operations at the sites.

Chapter 3: Existing Operations
- Details the existing mine operations.
- Identifies the relevant licences and approvals and mining processes utilised at Springvale Mine.
- Consists of the history and extent of operations, mining undertaken to date, and the supporting surface infrastructure including coal handling and transport, and water management.
- Incorporates broader considerations of the Project in its local context including the environmental management procedures currently employed by Springvale Coal, and current employment economic contributions.

Chapter 4: Project Description
- Describes the Project and aspects of the existing mining operations at Springvale Mine that will continue as a result of the Project.
- Provides an overview of considerations for mine closure, including the life-of-mine rehabilitation, the nominated end land use and the final landforms.

Chapter 5: Planning Considerations
- Discusses local, State and Commonwealth planning considerations relevant to the permissibility of the Project.

Chapter 6: Socio-Economic Analysis
- Discusses the methodology used for the social and economic assessments.
- Provides and analyses the findings of the social and economic costs and benefits of the Project.

Chapter 7: Stakeholder Engagement
- Discusses the engagement strategies of the existing operation and the Project.
- Details the outcomes of consultation undertaken and how it has been addressed in the EIS.

Chapter 8: Mine Design and Subsidence
- Discusses the development of the mine plan.
- Describes the design philosophy and mine constraints that have influenced the existing mine layout and the Project mine design principles.
- Discusses subsidence predictions and controls, which have been fundamental in determining the mine design.

Chapter 9: Identification of Key Environmental Issues
- Discusses the process undertaken to identify the key environmental impacts, the risk rating for each environmental aspect resulting from a broad-brush risk assessment undertaken for the Project, together with a subsidence constraints risk assessment.
- Discusses the process of assessing and appropriately managing potential environmental risks.

Chapter 10: Assessment and Management of Key Environmental Issues
- Discusses the assessment of key environmental issues through identification of the existing environment particular to the specific environmental aspect, the potential impact of the Project upon the environmental aspect, and the consequence of the relevant impact upon the environmental aspect.
- Describes the management measures proposed to mitigate and reduce environmental risk of the Project and/or offset any unavoidable impacts.

Chapter 11: Statement of Commitments
- Provides a Statement of Commitments regarding the Project’s construction, operation, maintenance, closure and rehabilitation of Springvale Mine.
Chapter 12: Justification and Conclusion

- Discusses the conclusions for the EIS and justification of the Project with regard to environmental, social and economic considerations.
- Provides an overall balance of impacts and benefits.
- Sets out the alternatives considered for the Project.
- Summarises how the objectives of Ecological Sustainable Development have been achieved for the Project.

References

- Contains source references used throughout this EIS.

Volume 2 Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Director General’s Requirements and Supplementary Director General’s Requirements</td>
</tr>
<tr>
<td>Appendix B</td>
<td>State Significant Development Application Form and Political Donations Disclosure Statement</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Schedule of Lands of the Project Application Area</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Subsidence Impact Assessment</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Groundwater Impact Assessment</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Surface water Impact Assessment</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Aquatic Ecology and Stygofauna Impact Assessment</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Flora and Fauna Impact Assessment</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Regional Biodiversity Strategy</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Traffic Impact Assessment</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Cultural Heritage Impact Assessment</td>
</tr>
<tr>
<td>Appendix L</td>
<td>Noise Impact Assessment</td>
</tr>
<tr>
<td>Appendix M</td>
<td>Air Quality and Greenhouse Gas Impact Assessments</td>
</tr>
<tr>
<td>Appendix N</td>
<td>Social Impact Assessment</td>
</tr>
<tr>
<td>Appendix O</td>
<td>Economic Impact Assessment</td>
</tr>
<tr>
<td>Appendix P</td>
<td>Decommissioning and Rehabilitation Strategy</td>
</tr>
<tr>
<td>Appendix Q</td>
<td>Visual Impact Assessment</td>
</tr>
<tr>
<td>Appendix R</td>
<td>Soils and Land Capability Assessment</td>
</tr>
<tr>
<td>Appendix S</td>
<td>Agricultural Impact Statement</td>
</tr>
</tbody>
</table>
1.5 Overview of the Project

The components of Springvale Mine’s existing operations are an underground longwall mine, accessed via the Springvale pit top, and supporting surface infrastructure within the pit top area and on Newnes Plateau within the Newnes State Forest.

Springvale Coal proposes to extend its mining operations, using longwall mining techniques to, to the east, the south-east and south-west of its existing workings at Springvale Mine.

The Project will:

- in general, include all currently approved operations, facilities and infrastructure of the Springvale Mine, except as otherwise indicated in this EIS;
- continue to extract up to 4.5 million tonnes per annum (Mtpa) of ROM coal from the Lithgow Seam underlying the Project Application Area;
- extend the life of the mine for an additional 13 years with rehabilitation to be undertaken after this period;
- develop underground access headings and roadways from the current mining area to the east to allow access to the proposed mining areas;
- undertake secondary extraction by retreat longwall mining technique for the proposed longwalls LW416 to LW432 and LW501 to LW503;
- continue to use the existing ancillary surface facilities at the Springvale pit top;
- continue to manage the handling of ROM coal through a crusher and screening plant at the Springvale pit top, and the subsequent loading of the coal onto the existing overland conveyor system for despatch to offsite locations (Section 1.8);
- continue to operate and maintain the existing ancillary surface infrastructure for ventilation, electricity, water, materials supply, and communications at the Springvale pit top and on Newnes Plateau;
- install and operate two additional dewatering bore facilities (Bores 9 and 10) on Newnes Plateau and the associated power and pipeline infrastructure, and upgrade the existing and construct two new sections of access tracks to Bores 9 and 10 facilities;
- construct a downcast ventilation borehole at the Bore 10 facility location;
- establish a mine services borehole area;
- continue to use the existing Springvale Delta Water Transfer Scheme (SDWTS);
- upgrade the existing SDWTS comprising construction of new sections of the trenched pipelines to increase the water delivery capacity of SDWTS from the existing 30 ML/day to up to 50 ML/day;
- manage predicted increase in mine inflows using a combination of direct water transfer to the Wallerawang Power Station, via the SDWTS, and discharge through Angus Place Colliery’s licensed discharge point LDP001 and Springvale Mine’s LDP009;
- continue to undertake existing and initiate new environmental monitoring programmes;
- continue exploration activities, predominantly borehole drilling to further refine the existing geological model;
- continue to operate 24 hours per day seven days per week, 52 weeks per year;
provide employment to a full time workforce of up to 310 employees;
progressively rehabilitate disturbed areas at infrastructure sites no longer required for mining operations;
undertake life-of-mine rehabilitation at the Springvale pit top and the Newnes Plateau infrastructure disturbance areas to create final landforms commensurate with the surrounding areas and the relevant zonings of the respective areas; and
transfer the operational management and physical infrastructure regarding coal processing and distribution infrastructure to the Western Coal Services Project (when approved). The exception to this is that it will be the development consent granted in respect of the Springvale Mine Extension Project (and not the development consent granted in respect of the Western Coal Services Project) which will continue to authorise the transport of up to 50,000 tonnes per annum of ROM coal to local domestic customers by road haulage.

1.6 Director General’s Requirements
The DGRs for the Project were issued by the Director General of the DP&I on 6 November 2012. Further to the submission of an Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) referral (EPBC 2013/6881) to the Federal Minister of the Environment on 20 May 2013, the Project was declared a controlled action under the EPBC Act on 7 July 2013. To ensure that sufficient information be provided to enable an appropriate level of assessment of relevant matters of National Environmental Significance in accordance with the EPBC Act, the Director-General issued supplementary requirements for the EIS under section 78A(8A) of the EP&A Act on 30 August 2013.

The Federal Minister’s delegate determined that the Project will be assessed by the accredited assessment under the EP&A Act on 7 July 2013.

This EIS has been prepared in accordance with the DGRs for the Project and the supplementary DGRs (DP&I reference State Significant Development_5602). The DGRs and the supplementary DGRs for the Project are provided in full in Appendix A.

Table 1.2 and Table 1.3 lists the DGRs and references the relevant chapter and/or section of the EIS where they have been assessed by using the State process.
Table 1.2 Director General’s Requirements for the Project

<table>
<thead>
<tr>
<th>Director General’s Requirements</th>
<th>EIS Chapter Reference and Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Requirements</td>
<td></td>
</tr>
<tr>
<td>The Environmental Impact Statement (EIS) for the development must meet the form and content requirements in Clauses 6 and 7 of Schedule 2 of the Environmental Planning and Assessment Regulation 2000. In addition, the EIS must include:</td>
<td></td>
</tr>
<tr>
<td>• a detailed description of the development, including:</td>
<td></td>
</tr>
<tr>
<td>1. need for the proposed development;</td>
<td>1. Section 12.1</td>
</tr>
<tr>
<td>2. likely staging of the development - including construction, operational stage/s and rehabilitation;</td>
<td>2. Chapter 4.0</td>
</tr>
<tr>
<td>3. likely interactions between the development and any approved and proposed mining operations, including detailed assessments of any required modifications to the approvals for these operations;</td>
<td>3. Section 1.8</td>
</tr>
<tr>
<td>4. likely interactions with other approved developments/projects at the site; and</td>
<td>4. Chapter 10.0</td>
</tr>
<tr>
<td>5. plans of any proposed building works.</td>
<td>5. Chapter 4.0</td>
</tr>
<tr>
<td>• consideration of all relevant environmental planning instruments, including identification and justification of any inconsistencies with these instruments;</td>
<td>Chapter 5.0</td>
</tr>
<tr>
<td>• a risk assessment of the potential environmental impacts of the development, identifying the issues for further assessment.</td>
<td>Chapter 9.0</td>
</tr>
<tr>
<td>• a detailed assessment of the key issues specified below, and any other significant issues identified in this risk assessment, which includes:</td>
<td></td>
</tr>
<tr>
<td>1. a description of the existing environment, using sufficient baseline data;</td>
<td>1. Chapter 2.0</td>
</tr>
<tr>
<td>2. an assessment of the potential impacts of all stages of the development, including any cumulative impacts, taking into consideration relevant guidelines, policies, plans and statutes; and</td>
<td>2. Chapter 10.0</td>
</tr>
<tr>
<td>3. a description of the measures that would be implemented to avoid, minimise and, if necessary, offset the potential impacts of the development, including proposals for adaptive management and/or contingency plans to manage any significant risks to the environment.</td>
<td>3. Chapter 10.0</td>
</tr>
<tr>
<td>• a consolidated summary of all the proposed environmental management and monitoring measures, highlighting commitments included in the EIS.</td>
<td>Chapter 11.0</td>
</tr>
<tr>
<td>The EIS must be accompanied by a report from a qualified quantity surveyor providing:</td>
<td></td>
</tr>
<tr>
<td>• a detailed calculation of the capital investment value (as defined in clause 3 of the Environmental Planning and Assessment Regulation 2000) of the proposal, including details of all the assumptions and components from which the CIV calculation is derived;</td>
<td>Chapter 6.0: Socio-Economic Analysis and Appendix M & N</td>
</tr>
<tr>
<td>• a close estimate of the jobs that will be created by the development during the construction and operational phases of the development; and</td>
<td></td>
</tr>
<tr>
<td>• certification that the information provided is accurate at the date of preparation.</td>
<td></td>
</tr>
</tbody>
</table>
Director General’s Requirements

Subsidence – including a detailed quantitative and qualitative assessment of the potential conventional and non-conventional subsidence impacts of the development that includes:

1. Identification of the natural and built features that may be affected by subsidence, and an assessment of the respective values of these features;
2. Predictions of the subsidence effects and impacts of the development, including a robust sensitivity analysis of these predictions;
3. Assessment of the potential subsidence impacts of these effects and impacts on both the natural and built environment, particularly features that are considered to have significant economic, social, cultural or environmental values; and
4. Description of the measures that would be implemented to avoid, minimise, remediate and/or offset subsidence impacts and the environmental consequences (including adaptive management and proposed performance measures).

Land Resources – including a detailed assessment of impacts to:

1. soils and land capability (including erosion and land contamination);
2. landforms and topography, including cliffs, rock formations, steep slopes, etc; and
3. land use, including agricultural, forestry, conservation and recreational use.

Water Resources – including:

1. detailed assessment of potential impacts on the quality and quantity of existing surface water and ground water resources in accordance with the NSW Aquifer Interference Policy, including;
2. impacts on affected licensed water users and basic landholder rights;
3. impacts on riparian, ecological, geo-morphological and hydrological values of watercourses, including groundwater dependent ecosystems and environmental flows; and
4. whether the development can operate to achieve a neutral or beneficial effect on water quality in the drinking water catchment, consistent with the provisions of State Environmental Planning Policy (Sydney Drinking Water Catchment) 2011;
5. a detailed site water balance, including a description of site water demands, water disposal methods (inclusive of volume and frequency of any water discharges), water supply and transfer infrastructure and water storage structures; and
6. identification of any licensing requirements, including existing or future Environment Protection Licences (EPLs) or Pollution Reduction Programmes (PRPs), and approvals under the Water Act 1912 and/or Water Management Act 2000;
7. demonstration that water for the construction and operation of the development can be obtained from an appropriately authorised and reliable supply in accordance with the operating rules of any relevant Water Sharing Plan (WSP);
8. a description of the measures proposed to ensure the development can operate in accordance with the requirements of any relevant WSP or water source embargo; and
9. a detailed description of the proposed water management system (including sewerage), water monitoring regime, beneficial water re-use programme and all other proposed measures to mitigate surface water and groundwater impacts.

EIS Chapter Reference and Appendix

- 1. Chapter 2.0
- 2. Chapter 8.0 and Appendix D
- 3. Chapter 10
- 4. Chapter 10
- 1. Section 2.6.1, Section 5.4.4
- 2. Sections 2.3 and 10.1, and 10.1
- 3. Section 2.5.1
- 1. Section 10.2 and Section 10.3
- 2. Section 10.2
- 3. Section 10.2
- 4. Section 10.2
- 5. Appendix F
- 6. Section 10.2.3.3
- 7. Section 10.2.3.3
- 8. Section 10.2.3.3
- 9. Section 10.2
Director General’s Requirements

<table>
<thead>
<tr>
<th>Biodiversity – including:</th>
<th>EIS Chapter Reference and Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. accurate estimates of direct vegetation impacts, such as clearing and subsidence and indirect impacts such as ‘edge effects’;</td>
<td>1. Section 10.5.3</td>
</tr>
<tr>
<td>2. a detailed assessment of potential impacts of the development on:</td>
<td>2. Section 10.3</td>
</tr>
<tr>
<td>3. Temperate Highland Peat Swamps;</td>
<td>3. Section 10.3.1</td>
</tr>
<tr>
<td>4. other terrestrial or aquatic threatened species or populations and their habitats,</td>
<td>4. Section 10.3.1</td>
</tr>
<tr>
<td>endangered ecological communities and groundwater dependent ecosystems; and</td>
<td>5. Section 10.3.1</td>
</tr>
<tr>
<td>5. regionally significant remnant vegetation, or vegetation corridors; and</td>
<td>6. Section 10.3.7</td>
</tr>
<tr>
<td>6. measures that would be taken to avoid, reduce or mitigate impacts on biodiversity,</td>
<td>7. Section 10.3.6.4</td>
</tr>
<tr>
<td>particularly Temperate Highland Peat Swamps; and</td>
<td></td>
</tr>
<tr>
<td>7. an offset strategy, which is clearly quantified, to ensure that the development maintains or improves the terrestrial and aquatic biodiversity values of the region in the medium to long term;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heritage – including an Aboriginal cultural heritage assessment (including both cultural and archaeological significance) which must:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. demonstrate effective consultation with the Aboriginal community in determining and assessing impacts, and developing and selecting mitigation options and measures; and</td>
<td>1. Section 10.4.2 and Appendix K</td>
</tr>
<tr>
<td>2. outline any proposed impact mitigation and management measures (including an evaluation of the effectiveness and reliability of the measures); and</td>
<td>2. Section 10.4.6</td>
</tr>
<tr>
<td>a Historic heritage assessment (including archaeology) which must:</td>
<td>3. Section 10.4.1</td>
</tr>
<tr>
<td>3. include a statement of heritage impact (including significance assessment) for any State significant or locally significant historic heritage items; and</td>
<td>4. Section 10.4.6</td>
</tr>
<tr>
<td>4. outline any proposed mitigation and management measures (including an evaluation of the effectiveness and reliability of the measures);</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Quality – including a quantitative assessment of potential:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. construction and operational impacts, with a particular focus on dust emissions including PM2.5 and PM10 emissions and dust generation from coal transport;</td>
<td>1. Section 10.7.3 and 10.7.4</td>
</tr>
<tr>
<td>2. reasonable and feasible mitigation measures to minimise dust emissions, including evidence that there are no such other available measures; and</td>
<td>2. Section 10.7.5</td>
</tr>
<tr>
<td>3. monitoring and best practice management measures, in particular real-time air quality monitoring;</td>
<td>3. Section 10.7.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greenhouse Gases – including:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a quantitative assessment of potential Scope 1, 2 and 3 greenhouse gas emissions;</td>
<td>1. Section 10.8: Greenhouse Gas Management</td>
</tr>
<tr>
<td>2. a qualitative assessment of the potential impacts of these emissions on the environment; and</td>
<td>2. Appendix M: Air Quality and Greenhouse Gas Impact Assessment</td>
</tr>
<tr>
<td>3. an assessment of reasonable and feasible measures to minimise greenhouse gas emissions and ensure energy efficiency;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noise – including a quantitative assessment of potential:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. construction, operational and off-site transport noise impacts;</td>
<td>1. Sections 10.6.4 and 10.6.5</td>
</tr>
<tr>
<td>2. reasonable and feasible mitigation measures, including evidence that there are no such other available measures; and</td>
<td>2. Section 10.6.6</td>
</tr>
<tr>
<td>3. monitoring and management measures, in particular real-time and attended noise monitoring;</td>
<td>3. Section 10.6.6</td>
</tr>
<tr>
<td>Director General’s Requirements</td>
<td>EIS Chapter Reference and Appendix</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Traffic & Transport – including:</td>
<td>Section 10.5:</td>
</tr>
<tr>
<td>➢ an assessment of potential traffic impacts on the capacity, efficiency and safety of the road network; and</td>
<td></td>
</tr>
<tr>
<td>➢ a description of the measures that would be implemented to maintain and/or improve the capacity, efficiency and safety of the road network in the surrounding area over the life of the development;</td>
<td></td>
</tr>
<tr>
<td>Visual – including:</td>
<td>Section 10.12</td>
</tr>
<tr>
<td>➢ a detailed assessment of the potential visual impacts of the development on private landowners in the surrounding area as well as from key vantage points in the public domain, in particular those available to recreational users from State forests, State conservation areas and national parks; and;</td>
<td></td>
</tr>
<tr>
<td>➢ a detailed description of the measures that would be implemented to minimise the visual impacts of the development;</td>
<td></td>
</tr>
<tr>
<td>Waste – including:</td>
<td>Section 10.13</td>
</tr>
<tr>
<td>➢ accurate estimates of the quantity and nature of the potential waste streams of the development, including tailings and coarse reject;</td>
<td></td>
</tr>
<tr>
<td>➢ a tailings and coarse reject disposal strategy; and</td>
<td></td>
</tr>
<tr>
<td>➢ a description of measures that would be implemented to minimise production of other waste, and ensure that that waste is appropriately managed;</td>
<td></td>
</tr>
<tr>
<td>Hazards – Paying particular attention to public safety, including bushfires</td>
<td>Section 10.14</td>
</tr>
<tr>
<td>1. potential direct and indirect economic benefits of the development for local and regional communities and the State;</td>
<td>1. Section 6.2.3</td>
</tr>
<tr>
<td>2. potential impacts on local and regional communities, including;</td>
<td>2. Section 6.1.4</td>
</tr>
<tr>
<td>3. any increased demand for local and regional infrastructure and services (such as housing, childcare, health, education and emergency services); and</td>
<td>3. Section 6.1.4</td>
</tr>
<tr>
<td>4. impacts on social amenity, particularly impacts on local residents of and other nearby landowners and residents;</td>
<td>4. Section 6.1.4</td>
</tr>
<tr>
<td>5. a detailed description of the measures that would be implemented to minimise the adverse social and economic impacts of the development, including any infrastructure improvements or contributions and/or voluntary planning agreement or similar mechanism; and</td>
<td>5. Chapter 6.0</td>
</tr>
<tr>
<td>6. a detailed assessment of the costs and benefits of the development as a whole, and whether it would result in a net benefit for the NSW community; and</td>
<td>6. Section 6.2.5</td>
</tr>
<tr>
<td>Rehabilitation – including the proposed rehabilitation strategy for the site, having regard to the key principles in Strategic Framework for Mine Closure, including:</td>
<td>1. Section 10.11.1</td>
</tr>
<tr>
<td>1. rehabilitation objectives, methodology, monitoring programmes, performance standards and proposed completion criteria;</td>
<td>2. Section 10.11.2</td>
</tr>
<tr>
<td>2. nominated final land use, having regard to any relevant strategic land use planning or resource management plans or policies;</td>
<td>3. Section 10.11.3</td>
</tr>
<tr>
<td>3. a conceptual final landform design, including a detailed figure depicting relevant site features; and</td>
<td>4. Section 10.11.3</td>
</tr>
<tr>
<td>4. the potential for integrating this strategy with any other rehabilitation and/or offset strategies in the region.</td>
<td></td>
</tr>
<tr>
<td>Plans and Documents</td>
<td>Throughout the EIS</td>
</tr>
<tr>
<td>Relevant plans, architectural drawings, diagrams and relevant documentation required under Schedule 1 of the EP&A Regulation 2000.</td>
<td></td>
</tr>
</tbody>
</table>

Consultation Requirements
Director General’s Requirements

During the preparation of the EIS, you must consult with relevant local, State and Commonwealth Government authorities, service providers, community groups and affected landowners. In particular you must consult with the:

- Commonwealth Department of Sustainability, Environment, Water, Population and Communities;
- Office of Environment and Heritage (including the Heritage Branch);
- Environment Protection Authority;
- Division of Resources and Energy within the Department of Trade and Investment, Regional Infrastructure and Services;
- Department of Primary Industries (including the NSW Office of Water, Forestry NSW, NSW Agriculture, Fisheries NSW and Catchments and Lands (Crown Lands Division));
- Transport for NSW (including the Centre for Transport Planning, Roads and Maritime Services);
- NSW Health;
- Sydney Catchment Authority;
- Hawkesbury-Nepean Catchment Management Authority;
- Lithgow City Council;
- Delta Electricity; and
- relevant Aboriginal stakeholders.

The EIS must describe the consultation process and the issues raised, and identify where the design of the development has been amended in response to these issues. Where amendments have not been made to address an issue, justification should be provided.

<table>
<thead>
<tr>
<th>EIS Chapter Reference and Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7.0: Stakeholder Engagement</td>
</tr>
</tbody>
</table>
Table 1.3 Supplementary Director General’s Requirements

<table>
<thead>
<tr>
<th>Director General Requirements</th>
<th>EIS Chapter Reference and Appendix Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information:</td>
<td></td>
</tr>
<tr>
<td>1. The background of the action, including:</td>
<td>Section 1.1</td>
</tr>
<tr>
<td>a) the title of the action;</td>
<td>Section 1.2</td>
</tr>
<tr>
<td>b) the full name and postal address of the designated proponent;</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>c) a clear outline of the objective of the action;</td>
<td>Section 2.1</td>
</tr>
<tr>
<td>d) the location of the action;</td>
<td>Section 1.1</td>
</tr>
<tr>
<td>e) the background to the development of the action;</td>
<td>Section 1.8</td>
</tr>
<tr>
<td>f) how the action related to any other actions (of which the proponent should reasonably be aware) that have been, or are being, taken or that have been approved in the region affected by the action;</td>
<td>Section 1.5</td>
</tr>
<tr>
<td>g) the current status of the action; and</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>h) the consequences of not proceeding with the action.</td>
<td></td>
</tr>
<tr>
<td>Description of the controlled action</td>
<td></td>
</tr>
<tr>
<td>2. A description of the action, including:</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>• all the components of the action;</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>• the precise location (including coordinates) of any works to be undertaken, structures to be built or elements of the action that may have relevant impacts;</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>• how the works are to be undertaken and design parameters for those aspects of the structures or elements of the action that may have relevant impacts;</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>• the timing and duration of the works to be undertaken; and</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>• to the extent reasonably practicable, a description of any feasible alternatives to the controlled action that have been identified through the assessment, and their likely impact, including:</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>• if relevant, the alternative of taking no action;</td>
<td></td>
</tr>
<tr>
<td>• a comparative description of the impacts of each alternative on the matters protected by the controlling provision for the action;</td>
<td></td>
</tr>
<tr>
<td>• sufficient detail to clarify why any alternative is preferred to another.</td>
<td></td>
</tr>
<tr>
<td>Short, medium and long-term advantages and disadvantages of the options should be discussed.</td>
<td></td>
</tr>
<tr>
<td>Description of the existing environment</td>
<td></td>
</tr>
<tr>
<td>3. A description of the existing environment of the proposal location and the surrounding areas that may be affected by the action, including but not limited to:</td>
<td>Section 10.3.2</td>
</tr>
<tr>
<td>• surveys using accepted methodology for targeting listed threatened species, ecological communities and their respective habitat, including but not limited to OEH’s Survey and assessment guidelines (2009) and the Department of Sustainability, Environment, Water, Populations and Communities (SEWPAC) species-specific survey guidelines for nationally threatened species.</td>
<td>Section 10.3.3</td>
</tr>
<tr>
<td>a description of the distribution and abundance of threatened species and ecological communities, as well as suitable habitat (including breeding, foraging, roosting habitat, habitat critical to the survival of threatened species) within the site and in surrounding areas that may be impacted by the proposal.</td>
<td>Appendix G and H</td>
</tr>
<tr>
<td>the regional distribution and abundance of suitable and potential habitat for threatened species and ecological communities surround the site.</td>
<td>Section 10.2</td>
</tr>
<tr>
<td>a description of the important water resources within the site and in</td>
<td>Section 10.2</td>
</tr>
</tbody>
</table>
Director General Requirements

surrounding areas, including detailed information addressing the department’s Water Resources Terms of Reference, currently in preparation.

a description of water related assets that are dependent on any important water resources, including an estimation of the water requirements of those assets (i.e. regional water use).

Description of the relevant impacts of the controlled action

4. An assessment of all relevant impacts with reference to the EPBC Act Policy Statement 1.1 Significant Impact Guidelines Matters of national Environmental Significance (2009) and species specific guidelines as relevant that the controlled action has will have or is likely to have. Information must include specific items listed in 4a-e in Appendix A.

5. Where there is a potential habitat for EPBC Act listed species, surveys must be undertaken. These surveys must be timed appropriately and undertaken for a suitable period of time by a qualified person. A subsequent description of the relevant impacts on such EPBC Act listed species should include, inter alia, direct, indirect, cumulative and facilitative impacts on the:
 - population of the species at the site;
 - area of occupancy of the species;
 - habitat critical to the survival of the species;
 - breeding cycle of the population; and
 - availability or quality of habitat for the species.
 If an endangered ecological community or threatened species is not believed to be present on the proposed site, detailed information must be included in the EIA to demonstrate that this community will not be impacted.

6. A description of the relevant impacts on the temperate Highland Peat Swamps on Sandstone (THPSS) should include a detailed description of the potential and likely hydrological changes that may occur as a result from the proposed action, including from subsidence. Direct and indirect impacts must be included. Cumulative and facilitative impacts should also be included. Impacts to be included are listed in 6 a-f in Appendix A. The impacts should be described for the construction operation al and decommissioning phases of the controlled action. This information should be described with reference to the ecological community as it is defined and listed under the EPBC Act.

7. An assessment of all relevant impacts to the World and National listed values of the Greater Blue Mountains World Heritage Area.

8. An assessment of all relevant impacts on water resources and water related values.

Proposed safeguards and mitigation measures

9. A description of feasible mitigation measures, changes to the action or procedures, which have been proposed by the proponent or suggested in public submissions, and which are intended to prevent or minimize relevant impacts. Information must include items listed in 9 a-h in Appendix A.

<table>
<thead>
<tr>
<th>Director General Requirements</th>
<th>EIS Chapter Reference and Appendix Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>surrounding areas, including detailed information addressing the department’s Water Resources Terms of Reference, currently in preparation.</td>
<td></td>
</tr>
<tr>
<td>a description of water related assets that are dependent on any important water resources, including an estimation of the water requirements of those assets (i.e. regional water use).</td>
<td></td>
</tr>
<tr>
<td>Description of the relevant impacts of the controlled action</td>
<td></td>
</tr>
<tr>
<td>4. An assessment of all relevant impacts with reference to the EPBC Act Policy Statement 1.1 Significant Impact Guidelines Matters of national Environmental Significance (2009) and species specific guidelines as relevant that the controlled action has will have or is likely to have. Information must include specific items listed in 4a-e in Appendix A.</td>
<td>4. Section 10.3.4 and 10.3.5</td>
</tr>
<tr>
<td>5. Where there is a potential habitat for EPBC Act listed species, surveys must be undertaken. These surveys must be timed appropriately and undertaken for a suitable period of time by a qualified person. A subsequent description of the relevant impacts on such EPBC Act listed species should include, inter alia, direct, indirect, cumulative and facilitative impacts on the:</td>
<td>5. Section 10.3.2, 10.3.3, 10.3.4 and 10.3.5</td>
</tr>
<tr>
<td>▪ population of the species at the site;</td>
<td>6. Section 10.3.4</td>
</tr>
<tr>
<td>▪ area of occupancy of the species;</td>
<td>7. Section 10.1.4 and 10.2.3</td>
</tr>
<tr>
<td>▪ habitat critical to the survival of the species;</td>
<td>8. Section 10.2.3</td>
</tr>
<tr>
<td>▪ breeding cycle of the population; and</td>
<td></td>
</tr>
<tr>
<td>▪ availability or quality of habitat for the species.</td>
<td></td>
</tr>
<tr>
<td>▪ If an endangered ecological community or threatened species is not believed to be present on the proposed site, detailed information must be included in the EIA to demonstrate that this community will not be impacted.</td>
<td></td>
</tr>
<tr>
<td>6. A description of the relevant impacts on the temperate Highland Peat Swamps on Sandstone (THPSS) should include a detailed description of the potential and likely hydrological changes that may occur as a result from the proposed action, including from subsidence. Direct and indirect impacts must be included. Cumulative and facilitative impacts should also be included. Impacts to be included are listed in 6 a-f in Appendix A. The impacts should be described for the construction operation al and decommissioning phases of the controlled action. This information should be described with reference to the ecological community as it is defined and listed under the EPBC Act.</td>
<td></td>
</tr>
<tr>
<td>7. An assessment of all relevant impacts to the World and National listed values of the Greater Blue Mountains World Heritage Area.</td>
<td></td>
</tr>
<tr>
<td>8. An assessment of all relevant impacts on water resources and water related values.</td>
<td></td>
</tr>
<tr>
<td>Proposed safeguards and mitigation measures</td>
<td></td>
</tr>
<tr>
<td>9. A description of feasible mitigation measures, changes to the action or procedures, which have been proposed by the proponent or suggested in public submissions, and which are intended to prevent or minimize relevant impacts. Information must include items listed in 9 a-h in Appendix A.</td>
<td>9. Section 10.3.7</td>
</tr>
</tbody>
</table>
Director General Requirements

<table>
<thead>
<tr>
<th>Offsets</th>
<th>EIS Chapter Reference and Appendix Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Where impacts cannot be avoided or mitigated, an offset package to</td>
<td>10. Section 10.3.6.4</td>
</tr>
<tr>
<td>compensate for any predicted or potential residual significant impacts</td>
<td></td>
</tr>
<tr>
<td>on matters of national environmental significance. Offsets should</td>
<td></td>
</tr>
<tr>
<td>demonstrate consistency with the Commonwealth EPBC Act</td>
<td></td>
</tr>
<tr>
<td>Environmental Offsets Policy (October 2012, or subsequent version).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other approvals and conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Any other requirements for approval or conditions that apply, or</td>
<td>11. Chapter 5.0</td>
</tr>
<tr>
<td>that the proponent reasonably believes are likely to apply, to the</td>
<td></td>
</tr>
<tr>
<td>proposed action.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economic and social matters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12. A description of the short-term and long-term social and economic</td>
<td>12. Chapter 6.0:</td>
</tr>
<tr>
<td>implications and/or impacts of the project.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental record of person proposing to take the action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Details of any proceedings under a Commonwealth, State or Territory</td>
<td>13. Section 2.8.4:</td>
</tr>
<tr>
<td>law for the protection of the environment or the conservation and</td>
<td>14. Section 3.12.2</td>
</tr>
<tr>
<td>sustainable use of natural resources against:</td>
<td></td>
</tr>
<tr>
<td>• the proponent; and</td>
<td></td>
</tr>
<tr>
<td>• for an action for which a person has applied for a permit, the</td>
<td></td>
</tr>
<tr>
<td>person making the application.</td>
<td></td>
</tr>
<tr>
<td>14. Details of the proponent’s environmental policy and planning</td>
<td></td>
</tr>
<tr>
<td>framework.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information sources</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. For information given in an environmental assessment, the draft</td>
<td>References</td>
</tr>
<tr>
<td>must state:</td>
<td></td>
</tr>
<tr>
<td>• the source of the information;</td>
<td></td>
</tr>
<tr>
<td>• how recent the information is;</td>
<td></td>
</tr>
<tr>
<td>• how the reliability of the information was tested; and</td>
<td></td>
</tr>
<tr>
<td>• what uncertainties (if any) are in the information.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consultation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Any consultation about the action, including:</td>
<td>Chapter 7.0</td>
</tr>
<tr>
<td>• any consultation that has already taken place;</td>
<td></td>
</tr>
<tr>
<td>• proposed consultation about relevant impacts of the action;</td>
<td></td>
</tr>
<tr>
<td>• if there has been consultation about the proposed action- any</td>
<td></td>
</tr>
<tr>
<td>documented responses to, or result of, the consultation.</td>
<td></td>
</tr>
<tr>
<td>17. Identification of affected parties, including a statement</td>
<td></td>
</tr>
<tr>
<td>mentioning any communities that may be affected and describing their</td>
<td></td>
</tr>
<tr>
<td>views.</td>
<td></td>
</tr>
</tbody>
</table>
1.7 Approval Process and Indicative Timeline

The Project is to be assessed as a State Significant Development (State Significant Development) in accordance with Clause 8 and Schedule 1 (Item 5) of State Environmental Planning Policy (State and Regional Development) 2011. This EIS has been prepared to accompany a development application by Springvale Coal for the Project in accordance with the provisions of Part 4 Division 4.1 of the EP&A Act. Chapter 5 details the key aspects of the Project that trigger the requirement for State Significant Development approval under the EP&A Act.

A summary of the Project State Significant Development assessment pathway is provided in Figure 1.4.

Based on the State Significant Development Assessment pathway, indicative approval timelines for the Project are outlined in Table 1.4.

Table 1.4 Springvale Mine Approval Pathway and Indicative Timeline

<table>
<thead>
<tr>
<th>Action</th>
<th>Indicative Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Briefing Paper for Springvale Mine Extension Project to the DP&I</td>
<td>September 2012</td>
</tr>
<tr>
<td>Receive Director General’s Requirements</td>
<td>6 November 2012</td>
</tr>
<tr>
<td>Lodge referral to SEWPAC (now DoE) and determined as a ‘controlled</td>
<td>17 April 2013</td>
</tr>
<tr>
<td>action’</td>
<td></td>
</tr>
<tr>
<td>Receive Supplementary Director General’s Requirements</td>
<td>30 August 2013</td>
</tr>
<tr>
<td>Submit EIS for adequacy review</td>
<td>November 2013</td>
</tr>
<tr>
<td>Exhibit EIS and invite public submissions (minimum 30 days)</td>
<td>April 2014 until May 2014</td>
</tr>
<tr>
<td>Submit a response to submissions report (if required)</td>
<td>June 2014</td>
</tr>
<tr>
<td>Department of Planning and Infrastructure assessment and Planning</td>
<td>August 2014</td>
</tr>
<tr>
<td>Assessment Commission (PAC) determination</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1.4: State Significant Development Assessment and Approval Pathways
1.8 Interaction with Centennial Projects in the Western Coalfield

1.8.1 Introduction

As is referred to elsewhere in this EIS, Centennial Coal Company Limited’s operations in the Western Coalfields include the following key interrelated components:

- the Springvale Mine (currently operated pursuant to Development Consent DA 11/92 and Development Consent DA 461/02);
- the Angus Place Colliery (currently operated pursuant to Project Approval PA 06_0021);
- the Springvale Coal Services Site (currently operated pursuant to Development Consent DA 11/92);
- a coal transport system comprising haul roads and overland conveyors linking the Springvale Mine, Angus Place Colliery, Springvale Coal Services Site, Mount Piper Power Station and Wallerawang Power Station (currently operated pursuant to Development Consent DA 11/92, Development Consent DA 326/02 and Project Approval PA 06_0021).

Centennial Coal has developed a long-term strategy for its future operations in the Western Coalfields to provide the infrastructure and flexibility required to meet future opportunities in both the domestic and export coal markets. As part of this strategy, Centennial Coal is seeking development consent for this Project in conjunction with:

- the Springvale Mine Extension Project; and
- the Western Coal Services Project.

Springvale Mine and Angus Place Colliery have the potential to cumulatively produce up to 8.5 million tonnes per annum of ROM coal, which is approximately 50% of Centennial’s annual ROM coal production.

Centennial Coal has consulted with the DP&I and other State and local government agencies to explain the interrelated nature of the relationship between the Angus Place Mine Extension Project, Springvale Mine Extension Project and the Western Coal Services Project (Figure 1.5). The DGRs for all three projects were issued at the same time, 6 November 2012. Centennial Coal submitted the Western Coal Services Project EIS to the DP&I in May 2013, with exhibition of the EIS for the Western Coal Services Project ending on 26 September 2013.

For the purpose of explaining the interrelationship between the Angus Place Mine Extension Project, Springvale Mine Extension Project and the Western Coal Services Project, high-level summaries of those three Projects are provided below. Each of the summaries includes an explanation of the implications the particular Project will have in respect of:

- the existing planning approvals for the Angus Place Colliery and Springvale Mine; and
- the planning approvals sought for these three Projects.
1.8.2 The Angus Place Mine Extension Project

1.8.2.1 Summary of Project

The Angus Place Colliery currently operates under Project Approval PA 06_0021 which was granted on 13 September 2006. This Part 3A Approval allowed for the consolidation of previous development consents, the expansion of the mining area and for an increase in the production limit to 4.0 million tonnes per annum. Project Approval PA 06_0021 is due to lapse on 18 August 2024.

Project Approval PA 06_0021 has been modified three times in 2011 and 2013 in accordance with Section 75W of the EP&A Act to facilitate continued mining at Angus Place Colliery. A Federal environmental approval was required in respect of the 2011 modification. That Federal environmental approval (EPBC 2011/5952) was granted by the Minister under the EPBC Act on 17 April 2012.

In brief, the Angus Place Mine Extension Project includes all currently approved operations, facilities and infrastructure of the Angus Place Colliery pursuant to:

- Project Approval PA 06_0021 (as modified);
- EPBC 2011/5952; and
the various approvals, licences, permits, certificates and authorities listed in Table 3.1 and Table 3.2 of the EIS for the Angus Place Mine Extension Project, including an existing approved SMP. except as otherwise indicated in the EIS for the Angus Place Mine Extension Project (for instance, see Table 4.1 in the EIS for the Angus Place Mine Extension Project). The principal components of the currently approved operations that will not form part of the Angus Place Mine Extension Project are the ROM coal transport operations and the operational management and rehabilitation of the Kerosene Vale stockpile currently authorised by Project Approval PA 06_0021:

- extension and continuation of longwall mining for 25 years from the date consent is granted for the Angus Place Mine Extension Project, with rehabilitation to be undertaken following this period; and
- modifications to existing facilities and infrastructure, and construction and operation of new facilities and infrastructure, within the Project Application Area for the Angus Place Mine Extension Project that are required to support the Project.

1.8.2.2 Implications for the Existing Planning Approvals

It is intended that:

- the development consent granted in respect of the Angus Place Mine Extension Project will authorise and regulate, amongst other things, the mining operations currently approved under Project Approval PA 06_0021;
- however, regulation of the ROM coal transport operations and the operational management and rehabilitation of the Kerosene Vale stockpile currently authorised by Project Approval PA 06_0021, will in effect be "transferred" to the development consent to be granted in respect of the Western Coal Services Project.

As such, it is anticipated that the development consent granted in respect of the Angus Place Mine Extension Project would contain a condition which has the effect of requiring the surrender of Project Approval PA 06_0021, but with such surrender only to occur after the grant of a development consent in respect of the Western Coal Services Project that authorises (among other things) ROM coal transport operations and the operational management and rehabilitation of the Kerosene Vale stockpile currently authorised by Project Approval PA 06_0021.

This would enable the continuation of approved surface infrastructure operations at the Angus Place Colliery so as to support the approved (pursuant to Project Approval PA 06_0021) and extended (pursuant to the new development consent) mining operations, pending the grant of the development consent for the Western Coal Services Project. For such continuation to occur, it will be necessary for the development consent granted for the Angus Place Colliery Extension Project to specify that its conditions do not prevail to the extent that there is any inconsistency with Project Approval PA 06_0021, while the latter planning approval is still on foot.

1.8.3 The Springvale Mine Extension Project

1.8.3.1 Summary of Project

The Springvale Mine was originally granted development consent (DA 11/92) by the then Minister for Planning on 27 July 1992. That consent has been modified on four occasions. Other development consents for the Springvale Mine are Development Consent DA 326/02 (for the construction and operation of a coal conveyor from the existing overland conveyor to Wallarawang Power Station) and Development Consent DA 461/02 (for the construction and operation of Ventilation Shaft 3 Facility on the Newnes Plateau) (together, the “Other Springvale Mine Planning Approvals”).
In brief, the Springvale Mine Extension Project includes all currently approved operations, facilities and infrastructure of the Springvale Mine pursuant to:

- Development Consent DA 11/92 (as modified) (including transport of up to 50,000 tonnes per annum of coal to local domestic customers by road haulage);
- Development Consent DA 461/02 (as modified); and
- the various approvals, licences, permits, certificates and authorities listed in Table 3.2 and Table 3.3 of this EIS, including an existing approved SMP.

except as otherwise indicated in this EIS (for instance, see Table 4.1). The principal components of the currently approved operations that will not form part of the Springvale Mine Extension Project are the existing infrastructure and operations at the surface of the Springvale Coal Services Site currently authorised by Development Consent DA 11/92 and the construction and use of the overland conveyor from the Castlereagh Highway to Wallerawang Power Station currently authorised by Development Consent DA 326/02:

- expansion and continuation of longwall mining for a further 13 years beyond the current expiry date of Development Consent DA 11/92 with rehabilitation to be undertaken following this period; and
- modifications to existing facilities and infrastructure, and construction and operation of new facilities and infrastructure, within the Project Application Area of the Springvale Mine Extension Project that are required to support the Project.

1.8.3.2 Implications for the Existing Planning Approvals

It is intended that:

- the development consent granted in respect of the Springvale Mine Extension Project will authorise and regulate, amongst other things, the mining operations currently approved under Development Consent DA 11/92 and the Other Springvale Mine Planning Approvals;
- however, the operational management of coal processing and transport of coal from the Springvale Mine that is currently authorised under Development Consent DA 11/92 and Development Consent DA 326/02, will in effect be "transferred" to the development consent to be granted in respect of the Western Coal Services Project. The exception to this is that it will be the development consent granted in respect of the Springvale Mine Extension Project (and not the development consent granted in respect of the Western Coal Services Project) that will authorise the transport of up to 50,000 tonnes per annum of coal to local domestic customers by road haulage.

As such, it is anticipated that the development consent granted in respect of the Springvale Mine Extension Project would contain a condition which has the effect of requiring:

- the surrender of Development Consent DA 461/02; and
- the surrender of Development Consent DA 11/92 and Development Consent DA 326/02, but with such surrender only to occur after the grant of a development consent in respect of the Western Coal Services Project that authorises (among other things):
 - the existing infrastructure and operations at the surface of the Springvale Coal Services Site presently authorised by Development Consent DA 11/92; and
 - the construction and use of the overland conveyor from the Castlereagh Highway to Wallerawang Power Station presently authorised by Development Consent DA 326/02.

This would enable the continuation of approved surface infrastructure operations at the Springvale Mine and the Springvale Coal Services Site so as to support the approved (pursuant to Development Consent DA
11/92 and the Other Springvale Mine Planning Approvals) and extended (pursuant to the new development consent) mining operations, pending the grant of the development consent for the Western Coal Services Project. For such continuation to occur, it will be necessary for the development consent granted for the Springvale Mine Extension Project to specify that its conditions do not prevail to the extent that there is any inconsistency with Development Consent DA 11/92, while the latter planning approval is still on foot.

1.8.4 The Western Coal Services Project

1.8.4.1 Summary of Project

The Western Coal Services Project seeks development consent for all operational management of coal processing and transport of coal from the Angus Place Colliery and Springvale Mine, including any such activities currently approved pursuant to:

- Springvale's Development Consent DA 11/92 (excluding the transport of up to 50,000 t per annum of coal to local domestic customers by road haulage, which will be authorised pursuant to the development consent granted in respect of the Springvale Mine Extension Project);
- Springvale's Development Consent DA 461/02; and
- Angus Place’s Project Approval PA 06_0021.

These facilities are integral to the ongoing handling, processing and transport of coal from the underground workings of Angus Place Colliery and Springvale Mine into domestic and export markets.

The development consent for the Western Coal Services Project would authorise the following activities (among other things):

- Upgrade of the existing washery and supporting infrastructure within the Springvale Coal Services Site by constructing a new washery adjacent to the existing facility that will remain operational to provide a total processing capacity of up to 7 million tonnes per annum.
- Construction of processing infrastructure including additional conveyors and transfer points and other coal handling requirements to cater for the upgraded washery facility within the existing surface disturbance footprint of the Springvale Coal Services Site.
- Extension and enlargement of the existing reject emplacement area on the Springvale Coal Services Site to enable sufficient reject disposal capacity for a 25 year life.
- Utilisation of the existing overland conveyor system to enable up to 6.3 Mtpa of coal to be delivered to Lidsdale Siding and 6.7 Mtpa to be delivered to Mount Piper Power Station.
- Construction of a private haul road, approximately 1.3 kilometres in length, linking the Springvale Coal Services Site with the existing private haul road from Angus Place Colliery to Mount Piper Power Station. This private Link Haul Road will cross a section of the existing Pine Dale Mine operation and over the Castlereagh Highway via the construction of a road bridge.
- Improvement of the current water management systems on the Springvale Coal Services Site by separating clean and dirty water streams prior to either reuse or discharge off site.
- Integration of the existing approved transport of coal at Springvale Mine and Angus Place Colliery into the one consent, including coal stockpiling activities at the Kerosene Vale Coal Stockpile Site (excluding the transport of up to 50,000 tonnes per annum of coal to local domestic customers by road haulage, which will be authorised pursuant to the development consent granted in respect of the Springvale Mine Extension Project).
Integration of the remaining rehabilitation, monitoring, water management and reporting requirements associated with the now closed Lamberts Gully Open Cut Mine which occupies the Springvale Coal Services Site.

Continued use of all existing approved infrastructure, facilities and activities associated with the transport and processing of coal from each mine gate and the point of delivery to the power stations and Lidsdale Siding. This infrastructure includes the existing conveyors, private haul roads, reject emplacement areas, services, access roads, car parks and buildings.

1.8.4.2 Implications for the Existing Planning Approvals

As noted above, it is intended that the development consent granted in respect of the Western Coal Services Project will authorise and regulate, among other things, the operational management of coal processing and transport of coal from the Angus Place Colliery and Springvale Mine currently approved pursuant to Springvale's Development Consent DA 11/92 (excluding the transport of up to 50,000 t per annum of coal to local domestic customers by road haulage, which will be authorised pursuant to the development consent granted in respect of the Springvale Mine Extension Project) and Development Consent DA 461/02, and Angus Place's Project Approval PA 06_0021.

As such, it is anticipated that the development consent granted in respect of the Western Coal Services Project would contain a condition which has the effect of requiring the surrender of Development Consent DA 11/92 and Project Approval 06_0021, but with such surrender only to occur after the grant of development consent in respect of the Springvale Mine Extension Project and the Angus Place Mine Extension Project.
CHAPTER 2.0
Site Description
2.0 SITE DESCRIPTION

2.1 Site Location

Springvale Mine is an existing underground longwall mining operation located in the Western Coalfield of New South Wales, 15 kilometres northwest of the city of Lithgow and 120 kilometres west-northwest of Sydney. Springvale pit top is accessed via the Castlereagh Highway and is located 3 kilometres east of Wallerawang.

Springvale Mine is bordered by Angus Place Colliery to the north, the closed Lithgow State Mine to the south, grazing land and Wallerawang Power Station to the west, and Newnes State Forest to the east (Figure 2.1).

The characteristics of the Project Application Area and surrounds include rural land, Newnes State Forest, coal handling transport and infrastructure, power stations and natural areas.

2.2 Project Application Area

The Project Application Area (Figure 1.3) comprises an area of 5,811 ha and is defined by the Mining Lease and Exploration Licence boundaries of Springvale Mine. It is located within the Lithgow Local Government Area and the Parishes of Cox, Clwydd, Cook, Marrangaroo and Lidsdale within the County of Cook (Figure 2.1). The area is characterised by environmental features (Section 2.3) such as pagodas, cliff lines, swamps, creeks, deep valleys, flora and fauna. Marrangaroo Creek, the Wolgan River, Carne River, Lambs Creek and Kangaroo Creek overlie the Project Application Area.

Coordinates of key infrastructure within the Project Application area have been included in Table 2.1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Easting (MGA 56)</th>
<th>Northing (MGA 56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Springvale pit top</td>
<td>230864</td>
<td>6300297</td>
</tr>
<tr>
<td>Substation 4</td>
<td>239022</td>
<td>6300426</td>
</tr>
<tr>
<td>Ventilation Shaft 3</td>
<td>237035</td>
<td>6301235</td>
</tr>
<tr>
<td>Mine Services Borehole Compound</td>
<td>238920</td>
<td>6301200</td>
</tr>
<tr>
<td>Bore 8 dewatering facility</td>
<td>239793</td>
<td>6304119</td>
</tr>
<tr>
<td>Bore 9 dewatering facility</td>
<td>240753</td>
<td>6303659</td>
</tr>
<tr>
<td>Bore 10 dewatering facility</td>
<td>241131</td>
<td>6301464</td>
</tr>
<tr>
<td>Ventilation Shaft 2</td>
<td>232594</td>
<td>6301176</td>
</tr>
<tr>
<td>Ventilation Shaft 1</td>
<td>232496</td>
<td>6301299</td>
</tr>
</tbody>
</table>
2.3 Landscape Features

The Project Application Area contains significant natural landscape features formed by the combination of geology, topography and vegetation. Topographically the Project Application Area can be divided into the Newnes Plateau and areas of lower elevation around the pit top.

The principal geology of the Newnes Plateau is a sedimentary sequence of sandstone, claystone and siltstone dating from the early Permian to the late Triassic, while lower areas are commonly deposited with more recent sediments.

Springvale Mine is located in an area of significant topographical variation. Most of the land surface within the Project Application Area and its environs lies within the Newnes Plateau at elevations from 900 m to greater than 1,175 m Australian Height Datum (AHD). Topography within the Newnes Plateau comprises narrow gorges with high undulating ridgelines and steep sided slopes of sandstone cliffs, which range between 10 m and 40 m in height. The Wolgan River, Coxs River and Colo River are the main catchments in the region. The floors of creeks and gullies lie at elevations of between 960 m and 980 m AHD. The pit top is at a lower elevation of approximately 910 m AHD.

Relatively open and flat valleys of the upper Coxs River and tributaries characterise the area south of Springvale pit top, while the pit top facilities themselves are in a small valley enclosed on the west, north and east by low forested hills.

Long term erosion of the elevated sandstones has formed the following features:

- cliffs, defined as rock faces from 5 m high with a minimum slope of 63 degrees; and
- pagodas, defined as isolated freestanding rock formations more than 5 m high.

Cliffs and pagodas predominate around Carne Creek and Marrangaroo Creek and tributaries in theNarrabeen sandstones. According to Washington et al (2011), pagodas (referred to within that paper as geo-diversity) form at greater than 1000 m elevation within the Banks Wall and Burra Moko Head Sandstone units of the Newnes Plateau. This finding is consistent with the mapping that has been undertaken across the Newnes Plateau by Springvale Mine and Angus Place Colliery. Whilst little is known about the formation of pagodas, their significance has been established in both Washington et al (2011) and the Coalpac Consolidation Project Planning Assessment Commission Report.

To assist in developing a mine plan that minimises impacts, locations of cliffs and pagodas have been plotted from a digital terrain model based on a 1 m x 1 m grid. Digital terrain information has been derived from Light Detection and Ranging (LiDAR) survey, aerial photography and detailed site survey. The pagodas and cliffs have specific plant and animal habitat values (further detailed in Section 2.8) as well as significant visual value. Photograph 2.1 shows the extensive pagoda complex referred to as The Lost City which is approximately 1,200 m from the nearest part of the Project Application Area.

The intrinsic value of cliffs and pagodas has been increasingly recognised over the years and to some extent through the gazettal of the Gardens of Stone National Park adjacent to the Project Application Area and Mugii Murum-ban State Conservation Area 26 kilometres to the north of the Project Application Area (not shown) reflects these values.

Carne Creek is located in the northwest of the Project Application Area and flows northwards into Wolgan River well downstream of the Wolgan Falls. Photograph 2.2 shows a view 2 kilometres north of the Project Application Area looking south along a typical section of Carne Creek towards the Project Application Area.

The upper catchment of the Wolgan River is within the northern section of the Project Application Area and flows north via Wolgan Falls into the Wolgan Valley and eventually into the Colo River System, that flows into the Hawkesbury River. The Wolgan Valley is enclosed by sheer sandstone cliffs and vegetated talus slopes. The Valley has been partially cleared for grazing, and is the site of the Emirates Wolgan Valley Resort.
The surface water catchments in the Project Application Area (Section 2.7) are the Coxs River in the west (Coxs River sub-catchments 1,3 and 4), Marrangaroo Creek in the centre, Wolgan River East and West in the northeast, Nine Mile and Bungleboori to the east and a small part of Farmers Creek catchment to the southeast.

Marrangaroo and Farmers Creek both join the Coxs River that flows generally south past Lithgow skirting the western flanks of the Blue Mountains before entering Lake Burragorang and eventually the Nepean River. Carne Creek and Wolgan River both flow generally northwards before joining and eventually emptying into the Colo River, which joins the Hawkesbury River near Lower Portland. Section 2.7 details these catchments further. The majority of Springvale Mine’s historic mining areas have been under the Coxs and Wolgan River west catchments. The proposed longwalls are under the Coxs Wolgan and Marrangaroo catchments.
Photograph 2.2: Looking south along Carne Creek towards the Project Application Area
The 15,100 ha Gardens of Stone National Park is to the north of the Project Application Area, while the 501,700 ha Wollemi National Park is further north and east. The 248,000 ha Blue Mountains National Park is located south east of the Project Application Area. Together these and other reserves in the region (Nattai, Kanangra-Boyd and Thirlmere Lakes National Parks and Jenolan Caves Reserve) make up the 103,000 ha Blue Mountains World Heritage Area, which was listed as a World Heritage Area in 2000 for significant biological evolutionary processes and the importance and diversity of habitats including wet and dry sclerophyll forest, mallee heathlands, swamps, wetlands and grasslands. The Blue Mountains World Heritage Area supports 10% of Australia’s vascular plant species including 100 species of eucalypts and at least one relict species, the Wollemi Pine. The World Heritage listing grants international recognition to Australia’s eucalypt forests within the largest protected and most intact sclerophyll forest wilderness remaining in a broad range of temperate climates. The Area “provides an exceptional living example of evolution of the modern Australian flora, to its present distinctive character in the classic Australian circumstance of low fertility soils, a drying climate and geographic isolation…” (The Blue Mountains World Heritage Institute, 2011). The World Heritage Area is administered by the Greater Blue Mountains World Heritage Area Advisory Committee and is supported by the 2009 to 2019 World Heritage Area Strategic Plan.

Newnes Plateau shrub swamps (Mapping Unit MU50 (DEC 2006)) and hanging swamps (Mapping Unit MU51 (DEC 2006)) occur within the Project Application Area. The distribution of these swamps across the Project Application Area is discussed in Section 2.8.2. The shrubs swamps occur in valley floors while the hanging swamps occur on hillsides, and both are endemic to the Newnes Plateau. The shrub swamps is listed as an endangered ecological community (EEC) under the Threatened Species and Conservation Act 1995 (TSC Act) and provide important habitat for a range of plants and animals. The shrubs and the hanging swamps are referred to collectively as the Temperate Highland Peat Swamps on Sandstone (THPSS) in accordance with the EPBC Act. In this document, where the term “shrub swamps” is used, reference is made specifically to Newnes Plateau shrub swamps (MU50), and where the acronym “THPSS” is used it refers collectively to the Newnes Plateau Shrub Swamps (MU50) and Newnes Plateau hanging swamps (MU51).

2.4 Study Areas

The study area for the majority of the technical assessments undertaken for the Project is the Project Application Area, with the exception of subsidence, terrestrial ecology and visual impact assessments. For these technical assessments, the study areas are defined as follows and are illustrated in Figure 2.2.

2.4.1 Subsidence Impact Assessment

In the subsidence impact assessment the study area is referred to as the ‘Extension Area’ and is defined as the surface area that is likely to be affected by the extraction of the proposed LW416 to LW432 and LW501 to LW503 in the Lithgow Seam. The Extension Area has been defined by combining the areas bounded by the following limits:

- the 26.5 degree angle of draw line from the extents of the proposed LW416 to LW432 and LW501 to LW503,
- the predicted limit of vertical subsidence, taken as the 20 mm subsidence contour resulting from the proposed longwalls.

2.4.2 Terrestrial Ecology Impact Assessment

The study area for the flora and fauna assessments comprised the predicted subsidence extents (as described in MSEC (2013) and defined as Extension Area above), and Environmental Study Areas (ESA). The survey area for the MSEC (2013) Extension Area included a buffer of at least 100 m around the 26.5 degree angle of draw line.
Figure 2.2: Project Study Areas
The ESAs represent the boundaries within which surface facilities will be located and were therefore subject to intensive targeted flora and habitat surveys in order to inform avoidance measures. The general approach was to assess an ESA that was larger than required for the proposed infrastructure. A 20 m wide corridor incorporating existing access track (10 m either side of the centreline of each track), or a new 20 m corridor for new sections of proposed tracks in addition to the locations of the proposed infrastructure, was included in the ESAs. The ESAs include the infrastructure footprint which is used to describe the vegetation clearing associated with the establishment of the surface infrastructure.

2.4.3 Visual Impact Assessment

A viewshed model was prepared for the Project to determine those areas that may be able to clearly view the Project components. The study area of this viewshed is shown on Figure 2.2.

2.4.4 Exploration Activities

Exploration activities (Section 3.2) at Springvale Mine has been to date undertaken within EL6974 and A460 boundaries (Figure 2.1). The Project will continue to undertake exploration within these boundaries (Table 4.1).

2.5 Land Use and Ownership

2.5.1 Land Use

2.5.1.1 Land Use in the Vicinity

Land use in the vicinity of the Project Application Area consists of residential uses, agriculture, open cut and underground coal mining, coal handling infrastructure, transport infrastructure, commercial forestry and power generation (Figure 2.3 and Photograph 2.3). Wallerawang is the closest retail and commercial centre, located approximately 3 kilometres west of the pit top. The Wallerawang Power Station and the Mount Piper Power Station (not shown), both owned and operated by Energy Australia (formerly Delta Electricity), are located to the west and northwest, respectively, of the Springvale pit top.

The Lidsdale Siding Coal Loading Facility at Wallerawang has been used as a coal storage and rail loading facility since 1974 to distribute coal by rail from Centennial Coal’s western region mines to ports on the NSW coast. Lidsdale village is located to the west of the Project Application Area and provides a rural fire service, park amenities and a church.

The nearest large urban centre is Lithgow with a population of 21,000. Lithgow is recognised as a tourist destination and meets the higher order retail, commercial and professional service needs of the area. Lithgow was established on the coal mining industry, however, steel manufacturing and other industrial enterprises have been carried out in the region. Agriculture accounts for 31% of land use of the area within the Lithgow Local Government Area.

The area around Springvale Mine has been subject to extensive mining operations in the past, with a number of active or completed mines in its vicinity, including Centennial’s existing operations.

2.5.1.2 Land Use in the Project Application Area

Land use within the Project Application Area predominantly consists of historical and existing mining operations and commercial forestry in the Newnes State Forest. Newnes State Forest comprises approximately 25,000 ha of pine plantation and native hardwood forest that is selectively logged under the Forestry Corporation of NSW tenure and management. In addition to the timber industry, the Newnes State Forest supports a number of recreational land uses. Public access is permitted in the Newnes State Forest with common recreation activities consisting of motorcycle riding, four wheel driving, bushwalking, camping, mountain bike riding, canyoning, photography, bird watching and other recreational and adventure activities.

A small portion of land along the western boundary of the Project Application Area is cleared and is used for agriculture. There is no intensive cropping in the area.
Photograph 2.3: Main Street Wallerawang, rock pagodas, shrub swamp and coal handling infrastructure at Lidsdale Siding
2.5.2 Land Ownership
Land ownership within and surrounding the Project Application Area consists of Crown Land, privately owned land and land owned and managed by the Forestry Corporation of NSW (Figure 2.3). Parcels of freehold land are located within the western boundaries of the Project Application Area and in the vicinity of Springvale pit top.

A schedule of land within and adjacent to the Project Application Area is provided in Appendix C.

2.5.3 Land Zoning
Under the Lithgow Local Environmental Plan 1994, land within the Project Application Area is zoned as 1(a) Rural (General), 1(c) Rural (Small holdings), and 1(f) Rural (Forestry) (Figure 2.4) the latter zoning forming the majority of the Project Application Area.

Lithgow City Council has recently developed a Draft Lithgow Local Environmental Plan 2013, which concluded its exhibition period on 6 August 2013. Under the Draft Lithgow Local Environmental Plan 2013, zones are renamed, with additional objectives and land uses set to better reflect the characteristics of the Lithgow Local Government Area. Table 2.2 provides a summary of the existing and proposed zones relevant to the Project Application Area.

Table 2.2: Zonings

<table>
<thead>
<tr>
<th>Lithgow Local Environmental Plan 1994</th>
<th>Draft Lithgow Local Environmental Plan 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1(a) Rural (General)</td>
<td>RU1 Primary Production</td>
</tr>
<tr>
<td>Zone 1(f) Rural (Forestry)</td>
<td>RU3 Forestry</td>
</tr>
<tr>
<td>Zone 2(v) Village</td>
<td>R1 General Residential</td>
</tr>
</tbody>
</table>

2.5.4 Nearest Sensitive Receptors
There are a number of sensitive residential and recreational receptors in the vicinity of the Project (Figure 2.5). A number of residential receptors are located to the south and southeast of Springvale pit top. There are a number of recreational receptors located in the wider area of Newnes State Forest, such as areas used for camping. A list of these receptors is provided in Table 2.3.
Table 2.3: Sensitive Receptors

<table>
<thead>
<tr>
<th>Residential Receptor</th>
<th>Receptor Type</th>
<th>Approximate Distance to Nearest Site Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Residential</td>
<td>2.8 km (Springvale pit top)</td>
</tr>
<tr>
<td>L2</td>
<td>Residential</td>
<td>2.4 km (Springvale pit top)</td>
</tr>
<tr>
<td>W1</td>
<td>Residential</td>
<td>3.8 km (Springvale pit top)</td>
</tr>
<tr>
<td>W2</td>
<td>Residential</td>
<td>3.9 km (Springvale pit top)</td>
</tr>
<tr>
<td>S1</td>
<td>Residential</td>
<td>750 m (Springvale pit top)</td>
</tr>
<tr>
<td>S2</td>
<td>Residential</td>
<td>700 m (Springvale pit top)</td>
</tr>
<tr>
<td>S3</td>
<td>Residential</td>
<td>2.1 km (Springvale pit top)</td>
</tr>
<tr>
<td>S4</td>
<td>Residential</td>
<td>930 m (Springvale pit top)</td>
</tr>
<tr>
<td>S5</td>
<td>Residential</td>
<td>1.4 km (Springvale pit top)</td>
</tr>
<tr>
<td>NF1</td>
<td>Recreational</td>
<td>1.9 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF2</td>
<td>Recreational</td>
<td>2.4 km (Ventilation Shaft 3 site)</td>
</tr>
<tr>
<td>NF3</td>
<td>Recreational</td>
<td>6.3 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF4</td>
<td>Recreational</td>
<td>5.4 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF5</td>
<td>Recreational</td>
<td>1.9 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF6</td>
<td>Recreational</td>
<td>2.6 km (Bore 9 site)</td>
</tr>
<tr>
<td>NF7</td>
<td>Recreational</td>
<td>3.9 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF8</td>
<td>Recreational</td>
<td>4.5 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF9</td>
<td>Recreational</td>
<td>7.3 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF12</td>
<td>Recreational</td>
<td>3.3 km (Springvale pit top)</td>
</tr>
<tr>
<td>NF13</td>
<td>Recreational</td>
<td>3.5 km (Springvale pit top)</td>
</tr>
<tr>
<td>NF14</td>
<td>Recreational</td>
<td>1.2 km (Ventilation Shaft 3 site)</td>
</tr>
<tr>
<td>NF15</td>
<td>Recreational</td>
<td>2.1 km (Bore 10 site)</td>
</tr>
<tr>
<td>NF16</td>
<td>Recreational</td>
<td>200 m (Bore 10 site)</td>
</tr>
</tbody>
</table>
Figure 2.4: Land Zoning

NOTE: The following zoning maps were gazetted under Lithgow’s Local Environmental Plan 1994. The plans were considered accurate at the date of their gazettal and may have been amended since. Council recommends that these maps be used as a guide only and that a Section 149 zoning certificate be obtained where formal clarification of the zoning is required.
Figure 2.5: Sensitive Receptor Locations

CENTENNIAL SPRINGVALE PTY. LTD.
NO PART OF IT IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, MICRO-COPYING, PHOTOCOPYING OR OTHERWISE BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED WITHOUT PRIOR WRITTEN PERMISSION

PROJECT APPLICATION AREA

LEGEND

- Recreational Receptor
- Residential Receptor
- Proposed Dewatering Facility
- Existing Dewatering Facility
- Existing Ventilation Shaft
- Town
- Village
- Mine Services Borehole

CENTENNIAL SPRINGVALE PTY. LTD. THIS DRAWING IS COPYRIGHT

DATE 17/11/2013
SEAM LITHGOW
REFERENCE 127623060-R-F048 SVC Rev 0
SCALE 1:100,000

NEWNES STATE FOREST

Ventilation Shaft 1
Ventilation Shaft 2
Ventilation Shaft 3
Substation 4
Springvale Pit Top

NF1 NF3 NF6 NF7 NF8 NF10 NF11 NF12 NF13 NF14 NF15 NF16 Bore 9 Bore 10

BEN BULLEN STATE FOREST LIDSDALE WALLAWANG NEWNES STATE FOREST

Centennial Coal
Springvale

Register No.

WALLERAWANG

Bore 8

SYDNEY

Lithgow

NEWCASTLE

CENTENNIAL SPRINGVALE PTY. LTD."
2.6 Soils and Geology

2.6.1 Soils and Land Capability

Reference to the Soil Landscapes of the Wallerawang (in SLR, 2013a) series shows eleven principal landscape units across the Project Application Area. These are listed in Table 2.4 together with their agricultural limitation rating in terms of grazing or cultivation potential, and associated soil type. The major soil order present in the Project Application Area is Kandosols covering 4,036 ha (69.7% of the Project Application Area). It represents the Soil Landscape Units of Warragamba, Medlow Bath, Newnes Plateau, Deanes Creek and the majority of Cullen Bullen.

Other minor soil orders include Tenosols covering 1,064 ha (18.3% of the Project Application Area) and Rudosols covering 532 ha (9.2% of the Project Application Area). The remaining soil landscape units, excluding disturbed terrain cover the remainder of the Project Application Area.

The major soil types within the proposed surface infrastructure areas are Kandosols. Other minor soil types include Tenosols, Rudosols and Kandosols.

Table 2.4: Soil Landscape Units and Soil Types

<table>
<thead>
<tr>
<th>Soil Landscape Unit</th>
<th>Soil Type/Order</th>
<th>Agricultural Limitation Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grazing</td>
</tr>
<tr>
<td>Mount Sinai</td>
<td>Tenosol</td>
<td>Severe</td>
</tr>
<tr>
<td>Deanes Creek</td>
<td>Tenosol</td>
<td>Severe</td>
</tr>
<tr>
<td>Deanes Creek Variant</td>
<td>Kandosol</td>
<td>Severe</td>
</tr>
<tr>
<td>Warragamba</td>
<td>Tenosol</td>
<td>Severe</td>
</tr>
<tr>
<td>Hassan Walls</td>
<td>Rudosol</td>
<td>High – Severe</td>
</tr>
<tr>
<td>Long Swamp</td>
<td>Organosol</td>
<td>Moderate</td>
</tr>
<tr>
<td>Wollangambe</td>
<td>Tenosol</td>
<td>Moderate – High</td>
</tr>
<tr>
<td>Newnes Plateau</td>
<td>Kandosol</td>
<td>Low</td>
</tr>
<tr>
<td>Medlow Bath</td>
<td>Kandosol</td>
<td>Low</td>
</tr>
<tr>
<td>Cullen Bullen</td>
<td>Vertosol</td>
<td>Low</td>
</tr>
<tr>
<td>Lithgow</td>
<td>Chromosol</td>
<td>Low</td>
</tr>
</tbody>
</table>

Soils across the Project Application Area have low inherent fertility and low agricultural potential. Further details on soil landscapes and land capability are provided in Section 10.9

2.6.2 Geology and Hydrogeology

2.6.2.1 Generalised Stratigraphy

The Lithgow area is located towards the western edge of the NSW Western Coalfields. The Illawarra Coal Measures are relatively thin in this area with an average thickness of 110 m from the Katoomba to the Lithgow seam at Springvale Mine. Above the coal measures, the Narrabeen Group is the only member of the Triassic sequence present in the area, having a maximum thickness of 340 m. Depth of cover to the Lithgow seam generally ranges between 350 m and 420 m, hence, the upper Narrabeen Group will usually comprise the surface strata above the proposed workings at Springvale Mine.

The sedimentary strata (Illawarra Coal Measures and Narrabeen Group) lies above older Silurian and Devonian Proterozoic rocks of the Lachlan fold belt. The Lithgow Coal Seam at Angus Place Colliery and Springvale Mine is stratigraphically the lowest economic seam with the depth to the older basement strata beneath this seam being shallow, up to 100 m, compared to other parts of the Sydney Basin, which can be many hundreds of metres. The Lithgow Seam ranges in thickness from less than one metre (where only the lower ply of the Lithgow Seam is present) to up to 9 m (where it coalesces with the overlying Lidsdale Seam).
with some thin carbonaceous or tuffaceous claystone layers present in the upper half of the seam. The seam generally dips at 1-2 degrees to the east northeast. The Katoomba and other seams at Springvale Mine (and Angus Place Colliery) are too thin to be viably extracted.

The generalised stratigraphy of the region is illustrated in Figure 2.6. Non coal-bearing Triassic strata directly overlie the Illawarra Coal Measures. These strata comprise the Narrabeen Group of rocks which have the following sequence of rock formations in descending order:

- Burralow Formation;
- Banks Wall Sandstone;
- Mount York Claystone;
- Burra-Moko Head Sandstone; and
- Caley Formation.

These formations comprise interbedded siltstone, sandstone and conglomeratic sandstone, with occasional claystone bands, as observed in the characteristic cliffs that occur throughout the area. Within the Narrabeen Group of rocks, the Burralow Formation and the Mount York Claystone are key stratigraphic horizons in terms of their hydrogeological significance.

The groundwater system underlying the Project Application Area is relatively complex with multi-layered units of variable permeability resulting in a number of discrete groundwater flow systems.

A number of key hydrostratigraphic units have been identified from past investigations. To further elaborate on the stratigraphic sequence presented in Figure 2.6, this comprises a series of horizontally layered and bedded, highly laminated and flat-lying sedimentary layered lithologies, which form a complex layered sequence of less-permeable and more-permeable horizons. Each layered sequence has differing grain size, lithification and strength properties which define their range in permeability.

Geological modelling of these units has enabled the identification of the major aquifers (AQ 1-6), aquicludes and semi-permeable horizons (SP1-4) in the hydrogeological system. The generalised stratigraphy of the area is as presented in Table 2.5, together with corresponding aquifer designations and less permeable horizons. This hydrostratigraphic sequence has been incorporated into the hydrogeological model developed for the site by Commonwealth Scientific and Industrial Research Organisation (CSIRO, 2013).

The stratigraphic sequence is further subdivided into three groundwater systems, separated by the Burralow Formation (SP4) and the Mount York Claystone (SP3), and in the natural environment, are largely independent of each other. These groundwater systems are denoted as perched, shallow and deep groundwater systems, respectively, and are discussed in detail in Section 2.6.2.5.
<table>
<thead>
<tr>
<th>PERIOD</th>
<th>GROUP</th>
<th>FORMATION</th>
<th>MEMBER</th>
<th>STRATIGRAPHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIASSIC</td>
<td>NARRABEEN GROUP</td>
<td>BURRAI LOW FORMATION</td>
<td></td>
<td>Sandstone, occasional claystone bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BANKS WALL SANDSTONE</td>
<td></td>
<td>Sandstone, siltstone & claystone bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT YORK CLAYSTONE</td>
<td></td>
<td>Claystone, with sandstone & shale bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BURRA-MOKO HEAD SANDSTONE</td>
<td></td>
<td>Sandstone, occasional claystone bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CALEY FORMATION</td>
<td></td>
<td>Sandstone, common siltstone & claystone bands</td>
</tr>
<tr>
<td>PERMIAN</td>
<td>ILLAWARRA COAL MEASURES</td>
<td>IRONDALE COAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LITHGOW/LIDSDALE COAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MARANGAROO FORMATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.6: Typical Stratigraphy (Palaris 2013a)
Table 2.5: Regional Hydrostratigraphic Summary and Hydrogeological Components

<table>
<thead>
<tr>
<th>Formation</th>
<th>Groundwater System</th>
<th>Aquifer Unit</th>
<th>Lithology</th>
<th>Hydraulic Properties</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrabeen Formation (Triassic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burralow Formation</td>
<td>PERCHED</td>
<td>AQ6</td>
<td>Sandstone</td>
<td>Unconfined aquifer overlies YS1 claystone. Siltstone/claystone aquitards direct groundwater laterally into adjacent gullies. Burralow Formation is consistent in the region, up to 100m thick in the south.</td>
<td>Formation within which shrub and hanging swamps are formed. Without the Burralow Formation and the aquitard layers within it, swamp communities would not exist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fine grained sandstone /siltstone / Aquitard</td>
<td>Separates AQ6 claystone units (YS4) and AQ5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP4</td>
<td>Medium to coarse grained sandstones interbedded with sandstone / siltstone / claystone</td>
<td>Siltstone/claystone aquitards direct groundwater laterally into adjacent gullies. Burralow Formation is consistent in the region, up to 100m thick in the south.</td>
<td>The thicker the Burralow Formation, the larger and more laterally extensive the swamp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thin semi-permeable claystone layer</td>
<td>Separates AQ5 and AQ4</td>
<td></td>
</tr>
<tr>
<td>Banks Wall Sandstone</td>
<td>SHALLOW</td>
<td>AQ4</td>
<td>Medium to coarse grained sandstone</td>
<td>Sandstone aquifer, consistent in nature and thickness, averaging 90m thick across the region.</td>
<td>Aquifer that underlies some of the swamp communities. shrub swamps formed in Banks Wall Sandstone have less access to seepage due to lack of Burralow Formation aquitards and are generally narrower and less extensive than those with Burralow Formation substrate.</td>
</tr>
<tr>
<td>Formation</td>
<td>Groundwater System</td>
<td>Aquifer Unit</td>
<td>Lithology</td>
<td>Hydraulic Properties</td>
<td>Importance</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Mount York Claystone</td>
<td></td>
<td>SP3</td>
<td>Interbedded claystone and sandstone Aquiclude</td>
<td>Separates AQ4 and AQ3. Averages 22m thick across the region</td>
<td>Significant regional aquitard that separates the shallow and deep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>groundwater systems</td>
</tr>
<tr>
<td>Burra – Moko Head Sandstone</td>
<td>DEEP</td>
<td>AQ3</td>
<td>Predominantly sandstone, with several thick</td>
<td>Sandstone units with consistent thickness in the region. Lowest</td>
<td>Sandstone unit where A Zone height of fracturing terminates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>claystone bands</td>
<td>stratigraphic unit above the coal measures</td>
<td></td>
</tr>
<tr>
<td>Caley Formation</td>
<td></td>
<td></td>
<td>Interbedded siltstone and sandstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmers Creek Formation</td>
<td>DEEP</td>
<td>AQ3</td>
<td>Katoomba seam</td>
<td>Hydraulically connected to the overlying Caley Formation and Burra- Moko Head Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap Sandstone</td>
<td>DEEP</td>
<td>AQ2</td>
<td>Sandstone with laminated siltstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Mine Creek Formation</td>
<td>DEEP</td>
<td>AQ2</td>
<td>Coal, mudstone, claystone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Middle River Seam)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watts Sandstone</td>
<td></td>
<td></td>
<td>Sandstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denman Formation</td>
<td></td>
<td>SP1</td>
<td>Interbedded mudstone / sandstone, claystone,</td>
<td>Separates AQ2 and AQ1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mudstone. Aquiclude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glen Davis Formation</td>
<td>DEEP</td>
<td>AQ1</td>
<td>Coal, claystone (Lithgow / Lidsdale Seam)</td>
<td>Includes the Lithgow / Lidsdale Seam which is hydraulically</td>
<td></td>
</tr>
</tbody>
</table>
2.6.2.2 Geological Structures

The study of geological structures in the Western Coalfield has been summarised in Palaris (2011) and has been based on aerial photography, remote imaging techniques and correlation of underground mining conditions to surface features dating back to the 1970s.

Landsat photo imagery provides detail on the extent of surface lineaments, based on topography and surface or vegetation trends and their coincidence with poor mining conditions underground. Mapping geological features and mining conditions in the underground workings enables the identification of trends in geological structures. Further research conducted by the CSIRO has contributed to the understanding of significant geological structure zones and lineaments and their link with anomalous mining conditions.

The geological structural fabric of the overlying Permian strata in the Lithgow area is controlled by underlying features in the older, basement strata. Significant analysis, using aeromagnetic data has been used to map the basement structures, which has enabled accurate prediction of the location of structures in both the Permian strata and the surface. This aspect is reflected in the alignment of valleys, cliff lines, distribution of vegetation and weathering patterns.

There is a high level of confidence in the knowledge of the geological structure of the region because of the link between topographic alignment on the surface, mapped geological structures in the mine workings and the identification of basement faults using aeromagnetic data. Figure 2.13 shows the locations of the major geological zones (or lineaments) in the Project Application Area and relative to the proposed mine plan.
Figure 2.7: Mine Plan and Distribution of Swamps Across the Project Application Area
The main structural zones are interpreted to be structures that penetrate from the basement strata, through the coal measures to the surface. Main structural zones include the northeast trending Wolgan River Lineament and the Deanes Creek Lineament which run through some of Springvale Mine's northern longwalls (Figure 2.13). The importance of the lineaments is shown by their relation to zones of geological structure (faults, shear zones and jointing), and poor mining conditions in various Lithgow area mines. Less prominent zones are noted to occur to Lithgow seam level or within the basement.

Subsidence measurement over the history of mining at Angus Place Colliery and Springvale Mine indicated that increased subsidence levels have occurred around major geological structure zones. A thorough review of subsidence data over history of mining at these mines found that recorded subsidence impacts had occurred only at locations with both major fault zones and incised valleys (with slope gradients >18 degrees). More detail on subsidence effects around major geological structure zones is included in Section 8.2.1.

Investigations have been conducted into the interactions of mine subsidence with major geological structure zones and their combined effects on groundwater systems. Localised mining related hydrological impacts have been measured at two locations (within East Wolgan Swamp and Kangaroo Creek Swamp). These cases are discussed in detail in Section 2.6.2.6. Investigations have concluded that, at both locations, the presence of major fault zones and incised valleys in combination with mine design factors caused localised hydrological impacts. Mine planning and mine design processes used for the Springvale and Angus Place Mine Extension Projects have specifically avoided the combination of factors which caused impacts in historical mining areas. Measurements indicate that there have been no historical cases in similar geological conditions and depths of cover to those in the Project Application Area where the Mount York Claystone aquitard has allowed significant depressurisation of the overlying shallow and perched groundwater systems.

Structure in the Western Coalfield is relatively undeformed, with seams dipping at one to two degrees towards the northeast. Together with the main structural lineaments, dominant structures include north-south trending regional monoclines and associated sub-parallel faults. Igneous intrusions are present in the centre and northeast of the Western Coalfields.

2.6.2.3 Newnes Plateau Geology Related to Swamp Formation

The geology of the Newnes Plateau is critical in shrub and hanging swamp formation. In order to better understand the near surface stratigraphy of the Newnes Plateau and its relationship to the formation of the shrub and hanging swamps, collectively known as the Temperate Highland Peat Swamps on Sandstone (THPSS), studies were undertaken by Springvale Mine and Angus Place Collieries to:

- create a detailed three dimensional model of topography and significant geological units; and
- identify if there was a correlation between the geological model, surface topography and the position of THPSS.

In recognition of the need to understand the near-surface stratigraphy and aquifer systems, a specific exploration programme was conducted in 2011 and 2012 to better define the upper stratigraphy. This programme comprised 17 fully cored holes, which were drilled at the larger than normal size, in order to improve core recovery. The holes were drilled from ridges between the shrub swamps in the Project Application Area.

Detailed analysis of the lithology was undertaken and the data was incorporated into the Minex geological database to allow three-dimensional modelling of correlatable stratigraphic units (i.e. stratigraphic units which are present on a regional scale). The analysis of the near surface stratigraphy also involved the use of geophysical data from 84 exploration boreholes (i.e. a total of 101 exploration boreholes). The location of these boreholes can be seen on Figure 2.11.
Burrallow Formation

A key finding of the study (McHugh, 2013) was the identification and detailing of the stratigraphy of the Burrallow Formation, which overlies the Banks Wall Sandstone throughout the Project Application Area. Most previous studies of the Angus Place Colliery and Springvale Mine areas do not typically include the presence of the Burrallow Formation, and instead refer to the Banks Wall Sandstone as the uppermost outcropping unit. At a maximum thickness of approximately 110 m, the Burrallow Formation within the Project Application Area, is thicker than previously proposed in the general Lithgow region.

The Burrallow Formation consists of medium- to coarse-grained sandstones interbedded with frequent sequences of fine-grained, clay-rich sandstones, siltstones, shales and claystones. Data from 101 bores was used in modelling of the Burrallow Formation. The Burrallow Formation, in all bores that enabled a detailed analysis to be made, contained multiple fine-grained lithological units. These fine-grained units can be several metres in thickness and their presence differentiates the Burrallow Formation from the underlying Banks Wall Sandstone. Correlation of the finer-grained units within the Burrallow Formation identified at least seven units, named YS1 to YS6 (including YS5A) in CSIRO (2013) (Appendix E).

Several of the claystone horizons, together with clay-rich, fine-to-medium grained sandstones and shales were found to be acting as aquitards, or semi-permeable layers. These aquitards retard the vertical movement of groundwater into underlying strata. Instead, much of the groundwater present within the Burrallow Formation is redirected laterally down-dip to discharge points in nearby valleys (valley wall seepage), which creates a permanent water source for the formation and maintenance of the Newnes Plateau Hanging Swamps. In the case of Newnes Plateau Shrub Swamps, precipitation is supplemented by moisture from groundwater sources to form several discharge horizons along the course of the host creek in which a shrub swamp is located.

As can be observed in Figure 2.8, by virtue of the regional dip, the aquitard horizons of the Burrallow Formation (represented as brown lines) are often present along the sides of ridges and thus follow the gully sides of the host creek below. The presence of aquitards at these locations leads to the occurrence of valley wall seepage which is an important source of moisture for the shrub swamps in the upper reaches of both Carne Creek and the Wolgan River. Valley wall seepage together with direct in-gully input of groundwater via aquitards permits continuity of hydration for the THPSS during periods of drought.

McHugh (2013) concluded that the presence of the Burrallow Formation is essential to the formation and persistence of both hanging and shrub swamps.

Figure 2.9 is an isopach drawing of the Burrallow Formation, which shows maximum thicknesses of approximately 110 m, principally in the northeast of the proposed longwall area (referred as Angus Place East) and the south eastern extent of Springvale Mine at the headwaters of East Wolgan, Sunnyside, Sunnyside East, Carne West, and Gang Gang Shrub Swamps. The extensive ridge system in the Springvale lease, where the Burrallow Formation is at its thickest, provides both a substantial precipitation recharge zone plus an array of aquitards to promote groundwater retention in the streams which flow from this watershed area. It is for this reason that shrub swamps in the southeast of the Project Application Area, in general, wetter and broader than those in the remainder of area and the Angus Place Mine Extension Project Application Area.

In the upper reaches of Burrallow-type shrub swamps, there is less opportunity for sequential aquifers to supply seepage, thus the upper reaches are typically periodically waterlogged. In the lower reaches, where the valleys have eroded deeper into the strata and moved lithologically downwards, cumulative seepage from multiple sequential aquifers combines and the lower reaches of these swamps are typically permanently waterlogged. Recent hydrogeological modelling includes the Burrallow Formation (RPS, 2013a; CSIRO, 2013). The presence of these near surface aquitards has been demonstrated to explain measured pre- and post-mining groundwater levels (which have been calibrated and validated against piezometer data). Data from piezometers and vegetation monitoring indicates that the vertical permeability of claystone layers is not affected by subsidence.
Figure 2.8: View of Carne Creek Shrub Swamps from 3D Geology Model
Figure 2.9: Burralow Formation Isopach Plan within Springvale Project Application Area
Banks Wall Sandstone

The Banks Wall Sandstone consists almost entirely of medium-to coarse-grained sandstone. It is consistent in nature and thickness across the Project Application Area and the Angus Place Mine Extension Project Application Area, averaging 90 m in thickness. These combined areas contain shrub swamps which are stratigraphically located solely within the Banks Wall Sandstone. These swamps occur primarily in steep-sided, narrow gullies due to the underlying Banks Wall Sandstone substrate, which is less easily eroded than the lithologies which comprise the overlying Burralow Formation. This can be seen on Figure 2.10 which allows comparison of the geology and topography of East Wolgan and Narrow Swamps (largely Banks Wall Sandstone substrate) to Sunnyside Swamp (Burralow Formation substrate). Where shrub swamps occur wholly within the Banks Wall Sandstone, they have less access to seepage at discharge points along creek beds due to the absence of aquitard horizons. This restricts the size and breadth of this shrub swamp type. Figure 2.10 shows that with the exception of shrub swamps in the Wolgan River and other perennial watercourses, the Banks Wall-type shrub swamps are invariably adjacent to subcrops of the lower Burralow Formation aquitard sequence and therefore receive substantial groundwater seepage from these horizons.

Figure 2.10 Cross Section through Geology and Topography of Narrow Swamp, East Wolgan Swamp and Sunnyside Swamp
Mount York Claystone
The Mount York Claystone has been found to be an important aquitard in hydrogeological modelling studies. Piezometer data indicates that aquifer interference above the Mount York Claystone as a result of longwall mining is very minor (as discussed in Section 10.2.2). As part of recent hydrogeological modelling studies (McHugh, 2013), a re-correlation of the data available across the Springvale Mine, Angus Place Colliery and Clarence Colliery leases was conducted. As a result of this investigation the areal consistency and thickness of the Mount York Claystone unit was established with much greater confidence than in previous studies.

The database of information used to model the thickness and lateral consistency of the Mount York Claystone across the Angus Place, Clarence and Springvale area is based on 501 exploration boreholes (Figure 2.11).

Average thickness of the full correlated Mount York Claystone unit is 22 m throughout the Springvale Mine, Angus Place Colliery and Clarence Colliery lease areas. It shows the consistent thickness and lateral extent of the Mount York Claystone in the lease areas. The top of the unit is generally 190 m – 210 m above the Lithgow seam, and has a gradational boundary with the Burra-Moko Sandstone below. Figure 2.12 shows the Burralow aquitards YS4 and YS6 (shown as blue and green lines respectively) used in the development of the hydrogeological model (CSIRO, 2013).

Burra-Moko Sandstone
The Burra-Moko formation consists predominantly of sandstone, but also includes several thick claystone bands, which are similar in nature and thickness to the bands within the Mount York Claystone. The Burra-Moko Sandstone is approximately 60 m in thickness and typically lies 130 m – 150 m above the Lithgow Seam. A review of piezometer and extensometer data from LW411 and LW412 (Section 2.6.2.6) indicates that the height of continuous fracturing above longwall mining areas in the Lithgow Seam is truncated at 132 m height above the workings at the interface of the Burra-Moko Head Sandstone.

2.6.2.4 Major Geological Structure Zones
Major geological structure zones are known to influence the subsidence behaviour of strata overlying mining areas. Studies have been conducted to identify major geological structure zones to enable accurate prediction of subsidence. There is a high level of confidence in predicting the existence of geological structure over the Angus Place Colliery and Springvale Mine mining areas due to the on-going work by CSIRO, SRK Consulting and the mines since the 1970s.

Major geological structure zones are characterised by their size and length and can be projected for many kilometres. The zones:

- have a strong surface expression that includes linear segments of deep valleys/gorges, however, these zones may also extend beneath surface plateaux (known as lineaments);
- are recognised as basement faults from aeromagnetic data (in the older geological strata underlying the Lithgow Seam); and
- are recognised in underground workings as faulted or highly fractured ground.
Major geological structure zones identified in the Project Application Area (Figure 2.13) are related to the Wolgan River and Deanes Creek lineaments. Four types of geological criteria are used to predict geological structure zones:

- **Type 1** - are major geological structural zones that are characterised by their size and length and can be projected for many kilometres.

- **Type 2** - similar to Type 1 with evidence of geological structure in the basement and mine workings except that the structure zone and the overlying topographic relief alignment extend only a limited distance – approximately a few kilometres.

- **Type 3** - these geological structures are predicted from mapped underground structures (faults, joint zones or stress zones), and basement features. There is no associated surface topographic relief.

- **Type 4** - identified basement structures. This geological structure type has no corresponding structures recognised in mine workings nor is it associated with surface relief. This type of structure prediction is the most common and is regarded as benign with respect to mining.

Three Type 1 structure zones are recognised in the Angus Place Colliery and Springvale Mine existing workings (Kangaroo Creek lineament, Wolgan River lineament and the Deanes Creek lineament). Whilst each of the four types is also present in the proposed Angus Place Colliery and Springvale Mine mining areas, albeit to limiting influence, the major influencing geological structures are Type 1 structures.
Figure 2.13: Major Geological Structure Zones Identified in the Project Application Area

LEGEND

- Project Application Area
- Village
- Watercourse
- Proposed Workings
- Existing Workings

Major Geological Structure
- Structure Type 1
- Structure Type 2

DATE: 21/02/2014
SEAM: LITHGOW
REFERENCE: 127623060-R-F079 SVC Rev 0
SCALE: 1:60,000

CENTENNIAL SPRINGVALE PTY. LTD.
THIS DRAWING IS COPYRIGHT
NO PART OF IT IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, MICRO-COPYING, PHOTOCOPYING OR OTHERWISE BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED WITHOUT PRIOR WRITTEN PERMISSION

Coordinate System: GDA 1994 MGA Zone 56
Normal, reverse and strike-slip faulting are associated with the Kangaroo Creek and Wolgan River lineaments. Structures associated with these lineaments are mid angled to sub-vertical (i.e. dip angles are between 35 and 80 degrees) and are oriented on a NE:SW, N:S and NW:SE strike. Normal and reverse fault throws range between 0.1 m and one metre typically in the lineament zones, however, the strike-slip faults may have displacements of several metres.

The Deanes Creek lineament consists of normal and reverse faulting, have similar dip angles to Kangaroo Creek and Wolgan River lineaments (Figure 2.13) and is orientated on a NE:SW and N:S strike.

Because of the link between topographic alignment on the surface, mapped geological structures in the mine workings and the identification of basement faults using aeromagnetic data; there is a high level of confidence in the knowledge of the geological structure of the region. More detail on the interactions of major geological structure zones, longwall mining and groundwater systems is presented in Section 2.6.2.4, Section 2.6.2.6 and Section 8.2.1.

2.6.2.5 Hydrogeology

The hydrogeology in the Springvale Mine and Angus Place Colliery region was investigated by CSIRO between 2004 and 2008 and is described in ACARP reports C14033 and C18016.

The most recent and detailed groundwater and aquifer modelling was conducted by CSIRO and RPS between 2011 and 2013. This modelling is based on the latest groundwater and geological data, which has been significantly improved since the initial CSIRO reports were published. The geological model includes data from 501 exploration boreholes (Figure 2.11). The groundwater model includes data from 142 piezometers in 31 boreholes over a period of up to 10 years and mine water inflow data which has been recorded over a period of 20 years.

Groundwater modelling indicates that the Mount York Claystone is the main aquitard in the region. As discussed in Section 2.6.2.3, this layer is continuous and thick over the entire region. The key trend is that there is a separation in responses to mining above and below the Mount York Claystone, and there is a lack of propagation of hydrogeological impacts through the Mount York Claystone. Piezometer data indicates that the strata above the Mount York Claystone remains saturated and in a state of equilibrium after mining. Piezometer data shows variable pressure responses indicating aquifer depressurisation below the Mount York Claystone after mining. Further detail is included in Section 10.2.2.

The Burralow Formation and the Mount York Claystone are key to the hydrogeological regime of the area and swamp formation. Both of these units are characterised by the presence of impermeable claystone/shale bands, and provide the hydraulic barriers between the perched and shallow groundwater systems and the shallow and deep groundwater systems, respectively. Each of the three groundwater systems (perched, shallow and deep), defined by these stratigraphic units, display independent hydraulic behaviours and are discussed in detail below.

Perched Groundwater System

The perched groundwater systems comprise discontinuous, surficial systems, which are generally hydraulically independent of the underlying regional groundwater system. They are located above the regional water table, on a series of low permeability bands, beds and lenses within the Burralow Formation. They are generally limited to topographically elevated areas and are completely reliant on rainfall to sustain them through direct recharge.

Rainfall infiltrates the upper horizons of the Burralow Formation until it is largely prevented from further vertical flow by the lower permeability units that consist of claystone or siltstone lenses. This flow then becomes predominantly horizontal and travels laterally along the lenses before discharging along the valley flanks.
Shallow Groundwater System
The shallow groundwater is a regional system located in the Banks Wall Sandstone and generally extends to a depth of 90 m below the Burralow Formation (i.e. 90 m to 200 m below the ground surface). Most groundwater flow is horizontal and it is predominantly recharged by direct infiltration where the aquifer outcrops beneath a weathered section.

The shallow groundwater system is underlain by the Mount York Claystone. This horizon comprises a low permeability layer that restricts infiltration downwards. At an average of 22 m thick, the Mount York Claystone acts as a significant regional aquitard isolating the shallow and perched groundwater systems from the deep groundwater system.

Deep Groundwater System
The deep groundwater system is located in the strata underlying the Mount York Claystone and includes the Illawarra Coal Measures which generally lie at a depth of 200 m to 500 m below the ground surface. Aquifer zones, which occur at depth are typically fractured rock aquifers or jointed coal seams. It is this system which produces the mine water inflows when groundwater in this system is drained into the goaf following coal extraction.

2.6.2.6 Groundwater Response to Longwall Mining
THPSS related groundwater monitoring commenced in 2002 at Springvale Mine and has been conducted continuously since this time. The monitoring programme involved swamp piezometers, shallow aquifer piezometers and multi-level vibrating wire piezometers. The data collected from this monitoring programme has been reviewed and analysed by CSIRO, Aurecon, RPS and The University of Queensland, and provided to both the NSW Office of Environment and Heritage and the former Federal Department Sustainability, Environment, Water, Populations and Communities (now the Department of the Environment) for their review.

Swamp Piezometers
There are 36 swamp piezometers installed in Newnes Plateau shrub swamps in the Angus Place and Springvale Mine Extension Project Application Areas. Those located in the Project Application Area are shown in Figure 3.9.

Piezometers are installed in swamps on the Newnes Plateau in hand augured boreholes to minimise environmental impacts associated with their installation. The boreholes are drilled using the hand auger to a point of “refusal”, where it is not possible to continue drilling. This point is often reached at the bedrock at the base of the swamp (although there are examples where dense clays or coarse gravels cause refusal). The peat / soil material excavated from the boreholes are logged in terms of soil type and other installation details, including location, relative level (RL), bore depth, instrument type are recorded. The piezometer instrument is installed at the base of the borehole and thus usually measures the standing water level above the bedrock beneath the swamp (although this depends on whether the borehole refused on bedrock). Hydrographs are prepared based on trending of standing water levels (below the ground surface) over time at the instrument locations. Technically, the flat horizontal lines in the hydrographs do not represent the standing water level, as this may be anywhere below the base of the bore. They are included in the figures in this report to indicate continuity of monitoring at the instrument location. It is important to understand that where the hydrographs show a flat horizontal line trend (which is at variable depths below ground level due to variable depths of the peat / soil profile at different locations within the swamps), the standing water level is at or below the base of the borehole (which generally represents the bedrock of the swamp).

Baseline data from the piezometers indicates that swamp hydrology is variable along individual swamps and standing water levels are typically influenced by rainfall in the upper reaches and by groundwater in the lower reaches.
As discussed above, the shrub swamps in the upper reaches of the Burralow Formation are typically periodically waterlogged. Of the 36 piezometers installed within the shrub swamps, 20 display periodically waterlogged behaviour. These swamps are:

- Kangaroo Creek Swamp (upper reaches);
- West Wolgan Swamp;
- Junction Swamp;
- Narrow Swamp;
- East Wolgan Swamp;
- Sunnyside West Swamp;
- Sunnyside East Swamp (upper and middle reaches);
- Carne West Swamp (upper reaches); and
- Tri-Star Swamp (upper and middle reaches).

Junction Swamp, Sunnyside West Swamp, East Wolgan Swamp, Sunnyside East Swamp and Carne West Swamp are located in the Springvale Project Application Area (Figure 2.28).

Figure 2.14 shows hydrographs of periodically waterlogged Newnes Plateau Shrub Swamp piezometers, noting the highly variable depth of the Standing Water Level and long duration between rainfall induced “spikes” in many of the hydrographs. There is a strong correlation between piezometer response and cumulative rainfall deviation trend line (in black). The cumulative rainfall deviation trend is calculated from difference between the measured rainfall and the long term average rainfall. Where the trend is negative, measured rainfall is less than average and where it is positive measured rainfall is greater than average. The cumulative rainfall deviation trend is calculated from the commencement of groundwater level monitoring activities on the Newnes Plateau in 2002.

In the lower reaches, where valleys have eroded deeper into the strata and seepage from multiple aquifers combines, the swamps are typically permanently waterlogged. Figure 2.15 shows hydrographs of the 16 permanently waterlogged shrub swamp piezometers. These swamps are: Sunnyside Swamp, Carne West Swamp (lower reaches), Gang Gang Swamp, Gang Gang West Swamp, Carne Central Swamp, Nine Mile Swamp, Pine Swamp, Marrangaroo Swamp, Twin Gully Swamp, Tri-Star Swamp (lower reaches), and Trail Six Swamp.

Note that the distinct negative spikes in the Sunnyside (SS1, SS2), Carne West (CW2), Marrangaroo (MS1), Carne Central (CC1) Swamp hydrographs (at co-incident dates) in Figure 2.15 are indicative of water quality sampling at the piezometer boreholes in several swamps, where samples are drawn from the boreholes for testing purposes. There is a distinctive pattern, where bailing results in immediate drawdown of the hole, followed by recovery of water level in an asymptotic manner over periods varying between a day and two weeks. Water levels completely recover on each occasion before the next sampling episode.
Figure 2.14: Hydrographs of periodically waterlogged swamp piezometers

Figure 2.15: Hydrographs of permanently waterlogged swamp piezometers
Monitoring of Mining Effects Using Swamp Piezometers

The time when mining occurs under a particular monitoring location is recorded on the hydrograph in order to determine if there is any immediate response to mining activities. It also allows a division between all pre-mining and post-mining data to establish longer term data trends. Where the monitoring site has been directly undermined, a vertical black line indicates the period in which the site was undermined. Where mining has been conducted within the angle of draw of the monitoring site, vertical grey lines or shading indicate the period when mining was conducted within the angle of draw.

Sunnyside Swamp

Figure 2.16 shows that mining has been conducted within the angle of draw of Sunnyside Swamp.

Figure 2.17 shows hydrographs of the five Sunnyside Swamp piezometers. They are generally classified as permanently waterlogged (although SS1 and SS2 water levels dropped in response to the drought of 2006 and SS3 water levels dropped in response to dry periods in 2010 and 2013). There is generally not a strong correlation between piezometer response and cumulative rainfall deviation trend line (in black).

The grey shaded areas of the graph indicate where mining was conducted within the angle of draw of the monitoring site. The hydrographs from the five Sunnyside Swamp piezometers clearly show that there has been no impact to standing water levels in this permanently waterlogged swamp as a result of longwall mining within the angle of draw.

Note that the distinct negative spikes in the SS1, SS2 hydrographs (at co-incident dates) in *Figure 2.17* (and *Figure 2.15*) are indicative of water quality sampling at the piezometer boreholes in several swamps, where samples are drawn from the boreholes for testing purposes. There is a distinctive pattern, where bailing results in immediate drawdown of the hole, followed by recovery of water level in an asymptotic manner over periods varying between a day and two weeks. Water levels completely recover on each occasion before the next sampling episode.

Surface water flow rates from Sunnyside Swamp before, during and after mining within the angle of draw were compared with those from Carne West Swamp (unaffected by mining) and trends were found to be very similar (as shown in *Figure 2.18*). The data clearly shows that there has been no impact to surface water flows in Sunnyside Swamp as a result of longwall mining within the angle of draw.
Figure 2.16: Mining Within Angle of Draw of Sunnyside Swamp

Figure 2.17: Hydrographs of Sunnyside Swamp piezometers
Monitoring of swamp piezometers located in the following shrub swamps has not detected changes to swamp hydrology in response to mining related activities:

- Junction Swamp;
- West Wolgan Swamp;
- Sunnyside West Swamp; and
- Sunnyside Swamp.

Changes to swamp hydrology have been detected in three swamps (Narrow Swamp, East Wolgan Swamp and Kangaroo Creek Swamp) in response to mining related activities.

This section provides a case study on an example of a swamp where long term hydrology has not been affected, and two swamps affected by mining related activities.

Junction Swamp Case Study

Figure 2.19 shows hydrographs of the swamp piezometers installed at Junction Swamp (indicated by the red, blue and green trend lines) together with the time of longwall mining beneath the piezometers (indicated by the vertical black lines) and the cumulative rainfall deviation which is indicated by the black trend line. Note that the swamp was undermined directly by two adjacent longwalls (LW408 in May 2003 and LW409 in April 2004) and the timing is reflected by the vertical black lines. There is a very strong correlation between the trend lines of standing water levels beneath the swamp and the cumulative rainfall deviation trend line for all swamp piezometers over the eleven years of monitoring at this location. This data indicated that the swamp is periodically waterlogged (standing water levels respond to rainfall). The data also indicates that...
there have been no significant impacts to swamp hydrology in response to longwall mining (standing water levels are similar to pre-mining levels).

![Figure 2.19: Hydrographs of Swamp Piezometers at Junction Swamp with timing of longwall mining beneath the piezometers and Cumulative Rainfall Deviation](image)

Figure 2.19: Hydrographs of Swamp Piezometers at Junction Swamp with timing of longwall mining beneath the piezometers and Cumulative Rainfall Deviation

East Wolgan Swamp Case Study

Based on previous investigations conducted and recent studies, there are a number of changes to East Wolgan Swamp which have resulted from mining related activities (mine water discharge and mine subsidence), which can be seen in [Photograph 2.4](image). The individual photos in [Photograph 2.4](image) were taken between the cavity location and approximately 200 m upstream. These impacts are summarised below:

- dieback of vegetation (along path of mine water flows);
- changes to swamp soil water chemistry (changes due to elevated EC (800-1000 µS/cm) and high pH in the range 8 to 9 of mine water flows);
- changes in swamp hydrology (wetting / drying cycles due to mine water discharge);
- erosion (along path of mine water flows);
- elevated sediment loads (along path of mine water flows);
- slumping of peat due to erosion of sub-surface sediments (two locations); and
- cavity beneath swamp (where loss of mine water discharge occurred).
Photograph 2.4: Impacts to East Wolgan Swamp from Mining Related Activities
Piezometers at both Narrow Swamp and East Wolgan Swamp indicated that changes to swamp hydrology were specifically related to the release of mine water discharge into the swamps at licensed discharge points on the Newnes Plateau between 1997 and 2006.

Figure 2.20 shows hydrographs of East Wolgan Swamp piezometers WE1 and WE2 showing the timing of mine water discharge and longwall mining as well as the cumulative rainfall deviation trend. Following the cessation of mine water discharges, the hydrograph trends can be seen to be strongly influenced by rainfall.

Figure 2.20 also shows the periods (in excess of two years) during which pre-mining data for WE1 piezometer was not influenced by mine water discharge, which may be used to characterise the pre-mining hydrology of East Wolgan Swamp. It is important to note that at both piezometer locations, the data shows that the standing water level was at or below the WE1 piezometer instrument (indicated by the flat horizontal line in the hydrograph trend) for most of the periods not influenced by mine water discharge. The Standing Water levels rise in response to rainfall events which are in excess of the long term average trends and fall in response to less than average rainfall trends. The responses are typically immediate and of short duration, indicated by the “spikes” in the hydrograph trends. When the data recorded during mine water discharged is removed, the same trend can be seen in the pre-mining baseline data. Based on this baseline data it is concluded that East Wolgan Swamp was a periodically waterlogged swamp before commencement of mining activities.

![Groundwater depths - East Wolgan Swamp Piezometers](image)

Figure 2.20: Hydrographs of East Wolgan Swamp Piezometers WE1 and WE2 showing the timing of mine water discharge and longwall mining as well as the cumulative rainfall deviation trend.

A detailed investigation, spanning several years, was undertaken to identify the causal factors that lead to these effects. The results of these investigations concluded that the primary cause of impacts to East Wolgan Swamp was mine water discharge. Mine water was discharged into this swamp via licensed discharge points LDP004 and LDP005 on Newnes Plateau between 1997 and 2006 (as shown in **Figure 2.21**). The sustained mine water discharges changed the swamp hydrology and vegetation community from periodically waterlogged to a permanently waterlogged. When mine water discharge was
initially removed in 2006, the resultant drying of the swamp caused a major impact to swamp vegetation (Photograph 2.6). Between May 2008 and March 2009 emergency mine water discharge was released at up to 12 ML/day into East Wolgan Swamp. Springvale Coal ceased discharging into East Wolgan and Narrow Swamps in April 2010.

There are no records of vegetation composition in East Wolgan Swamp between 1997 and 2006 (i.e. prior to mine water discharge and following commencement of mine water discharge), so it is not possible to ascertain changes in response to introduction of mine water discharge. The high proportion of sedges (an amphibious species under the Wetland Plant Functional Groups (WPFG) classification) around the mine water discharge flowpath (Photograph 2.6) in the EW01 flora monitoring quadrat is consistent with permanent waterlogging, as is their dieback in response to removal of the continuous water source (mine water discharge). It is not consistent with a periodically waterlogged swamp (which is the baseline hydrological classification of East Wolgan Swamp), where amphibious species are less abundant.

There is evidence that rapid change to vegetation communities in response to changed hydrology can occur. Photograph 2.5 shows images of Braeside Swamp remediation between October 2007 and April 2009. The changes to vegetation composition in response to the changed hydrology caused by introduction of water retention level spreaders are obvious. Weeds were present before remediation. Sedges are the first colonisers (with no seeding or other propagation) and grow rapidly in the period of less than two years.

As a result of extended periods of mine water discharge, the pH values measured in soil samples taken from East Wolgan Swamp in 2013 remain significantly higher (pH 8 to 9), than those typical for a Newnes Plateau shrub swamp with pH values in the range 4 to 6, i.e. alkaline throughout the soil profile, where expected range for an organic rich humus containing horizon is acidic. This appears to have hindered regrowth of swamp vegetation in the mine water discharge flow path (Photograph 2.7).

The images in Photograph 2.7 were taken between the cavity location and approximately one kilometre upstream. They indicate a similar trend of swamp vegetation outside the mine water discharge flow path remaining in healthy condition. The proposed remediation strategy for East Wolgan Swamp includes measures to assist with the "flushing" of contaminants (e.g. sodium bicarbonate) remaining in the peat / soil through retention and spreading of surface water flows from rainfall.
Photograph 2.5: Photos of Braeside Swamp remediation between October 2007 and April 2009

Photograph 2.6: Time Series Photos Taken at EW01 Flora Monitoring Quadrat Between June 2005 and November 2006, showing the impact to vegetation of removal of mine water discharge
Photograph 2.7: Photos of East Wolgan Swamp in 2013 showing healthy swamp vegetation outside mine water discharge flowpath
Further investigations identified a number of co-incident causal factors, which, when combined with mine water discharge, could result in similar impacts in other swamps. These factors are detailed in Table 2.6 along with the current management response. These combined factors are not evident for any swamps within the Project Application Area. Springvale Coal’s key management responses were as follows:

- Development of subcritical longwall panel design was implemented in 2011 (detailed in Section 8.3.3).
- Cessation of mine water discharge into East Wolgan and Narrow Swamps in April 2010.

Table 2.6 Causal Factors Leading to Impacts to East Wolgan Swamp

<table>
<thead>
<tr>
<th>Causal Factors</th>
<th>Springvale Coal Management Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine water discharge</td>
<td>Cease mine water discharge to Newnes Plateau (including proposed underground water storage for future emergency mine water discharges). NB. No Newnes Plateau discharges since April 2010</td>
</tr>
<tr>
<td>Intersection of major geological fault structures</td>
<td>Major geological structure zones identified through detailed topographic, geological and geophysical analysis. The relationship between mine subsidence, geological faulting and groundwater response is well understood from historical monitoring data (based on piezometers, extensometers, subsidence monitoring (terrestrial and LiDAR), exploration borehole data). This understanding is used in the mine planning and design process to ensure that combinations of risk factors do not occur in future mining areas in the Project Application Area.</td>
</tr>
<tr>
<td>Orientation of longwall panels sub-parallel to major structures</td>
<td>Angle of orientation increased for future swamps e.g. increase to 24° for Carne West and 51° for Sunnyside East.</td>
</tr>
<tr>
<td>Steepness and depth valley containing swamps</td>
<td>Surface topography is well understood from Digital Terrain Model. Analysis of topographic and subsidence data identified no measured impacts at slope angles <18 degrees (see Section 8.2.1 of this EIS).</td>
</tr>
<tr>
<td>In situ stress direction and magnitude</td>
<td>Horizontal stress orientation mapped through exploration borehole geophysical testing / analysis. Horizontal stress magnitude measured through installation of instrumentation in surface to seam boreholes and in the roof at seam level.</td>
</tr>
<tr>
<td>Critical width longwall panel design</td>
<td>Future longwalls in the vicinity of swamps are based on Subcritical panel design</td>
</tr>
<tr>
<td>Location and orientation of geological structure adjacent to the permanent barrier pillar</td>
<td>Future Mine workings designed to avoid alignment of major geological structure zones sub-parallel with edge of permanent barrier pillar subject to multiple panel subsidence effects</td>
</tr>
<tr>
<td>Subsidence interaction of adjacent Angus Place and Springvale workings</td>
<td>Springvale Mine and Angus Place Colliery future mining areas are not adjacent to each other (separated by over 500 m) thus interaction will be avoided.</td>
</tr>
</tbody>
</table>
Height of Fracturing Measured Adjacent to East Wolgan Swamp

Reviews of the extensometer and piezometer data for LW411 and LW412 have identified three distinct zones of sub-surface fracturing that indicate continuous fracturing between strata units (A-Zone), discontinuous fracturing and strata dilation (B-Zone) and a deformed elastic zone (C-Zone). The relationships of these zones to overlying strata are illustrated in Figure 2.22.

In addition to the measurements of anchor movements in extensometers installed in borehole SPR40, the response of the piezometers in borehole SPR39 to mining effects and Emergency Mine Water Discharges via LDP004 and LDP005 on Newnes Plateau in 2009 have enabled the heights of fracturing zones to be confidently defined.

The measured heights of fracturing for the A-Zone (height of continuous fracturing) and B-Zone (strata dilation) horizons were estimated to be 132 m and 256 m, respectively, above the longwalls. The upper boundary of the A-Zone (height of continuous fracturing) is coincident with the base of Burra-moko Head Sandstone unit, which is approximately 63 m thick.

Strata dilation (B-Zone) has developed a further 124 m above the A-Horizon into the Banks Wall Sandstone or 99 m below the surface above LW411.

Interaction of Major Fault Zones and Groundwater with Subsidence Effects Measured Adjacent to East Wolgan Swamp

Data from piezometers and extensometers and surface water flow monitoring stations located near East Wolgan Swamp was used to determine where mine water discharges which disappeared from the surface in East Wolgan Swamp flowed.

The depth of fault dilation due to interaction with LW411 and LW412 subsidence deformations was able to be determined from the response of the piezometers in borehole SPR39 to mining effects and Emergency Mine Water Discharges in 2009 (Figure 2.21).

Piezometer data demonstrates the following.

- Water is being stored in the dilated strata and is not draining below the Burra Moko-Head sandstone at greater rates than would normally be expected.
- Groundwater in the Banks Wall and Burra Moko-Head Units (B / C Zones) are connected by a network of jointing, however, compressive strains due to natural arching above panels have controlled the rock mass permeability between dilated bedding partings and limited vertical flows into the A-Zone.
- Surface waters were being stored in the B and C Zones and then compressed by strata consolidation. The lag time of approximately one week between discharge dates and piezometer response also indicates the pooling of groundwater higher up in the strata has increased the pressure at the piezometers below the point of groundwater entry only.
- At the time of monitoring, the fault was open near the surface and allowed water to surface waters to move deeper into the strata than it normally would have. The piezometers also indicate that fault dilation did not extend to depths greater than 140 m (which is above the Mount York Claystone).
- Increased groundwater pressure will have been dissipated laterally, along the natural iron-stained horizontal fractures within the Banks Wall Sandstone into storage or seepage out to the north into the Wolgan River where the Banks Wall Sandstone outcrops. This can be seen on Figure 2.23, where additional water entered the Wolgan River between the Sunnyside Swamp downstream monitoring point and East Wolgan Swamp Downstream Junction with the Wolgan River during periods of mine water discharge, but reduced to near zero levels in the 12 months of monitoring following cessation of discharges.
Figure 2.22: Height of Fracturing Relative to Overlying Stratigraphy

Figure 2.23: Timing of Mine Water Discharges and Difference Between East Wolgan Downstream Flows - Sunnyside Swamp Downstream Flows (East Wolgan Swamp Seepage to Wolgan River)
Water Level Data from Ridges Between Valleys Containing Newnes Plateau Shrub Swamps

Five water level monitoring boreholes were drilled in 2005 from the topographic ridges which lie between the valleys containing the following shrub swamps: West Wolgan Swamp, Narrow Swamp, East Wolgan Swamp, Sunnyside Swamp, Sunnyside East Swamp, Carne West Swamp and Gang Gang Swamp. Figure 2.24 is a plan showing the location of each of these bores (along the transect marked in red). Figure 2.25 shows the hydrographs of each of these boreholes since monitoring commenced in December 2005. The vertical lines on the hydrographs show the timing of mining beneath the borehole locations (in colours corresponding to the hydrographs). The black dashed line indicates the measured cumulative rainfall deviation. Figure 2.26 shows a cross section though the strata between the Lithgow Seam and the surface (along the transect indicated on Figure 2.24, including the location of mined longwall panels and the height of connected fracturing above them. The piezometer locations are also shown with the minimum and maximum standing water levels monitored at each location over the life of the monitoring installation. Monitoring of standing water levels at bores installed from the ridges between the shrub swamps indicates that there is very little change in response to mine subsidence and that minor fluctuations correspond with the cumulative rainfall deviation trend. This trend is the same for the ridges on either side of East Wolgan Swamp. The data indicates that the Burralow Formation aquifer system has not been significantly affected by mining over the period since 2005.

The effect of the Mount York Claystone is evident in Figure 2.26, where mine design limits the height of connected fracturing to well below this stratigraphic unit. This design ensures no connection through the Mount York Claystone between the mine workings and the shallow groundwater system (even in areas affected by major geological lineament fault zones). The re-design of mine workings at both the Springvale Mine and Angus Place Colliery is more conservative than the historical mine workings in the area of the transect shown in Figure 2.24, such that a high level of certainty can be placed on the geological and hydrogeological conditions that lead to swamp related impacts and the risk of future impact to these features is significantly reduced.

Summary of Hydrological Impacts of the Cavity in East Wolgan Swamp

The hydrological impacts of the cavity within East Wolgan Swamp are summarised below:

- localised impacts to perched groundwater system associated with the Burralow Formation (no observed anomalous fluctuations in adjacent ridge piezometers (Figure 2.25 and Figure 2.26);
- at the time of loss of surface water flows, the fault was open near the surface and allowed surface waters to move deeper into the strata than it normally would have. The piezometers indicate that fault dilation did not extend to depths greater than 140 m (which is above the Mount York Claystone) as shown in Figure 2.22;
- lateral dissipation of water in the strata above the Mount York Claystone into aquifer storage or seepage out to the north into the Wolgan River (Figure 2.23);
- no evidence of direct hydraulic connection from surface to mine workings (mine water inflows remained within predictions);
- no evidence of impacts to vegetation downstream of the cavity (Photograph 2.8);
- evidence of infilling of cracking which caused the cavity through natural sedimentation processes; and
- evidence of hydrological recovery of East Wolgan Swamp, with surface water consistently recorded downstream of the cavity since August 2010.
Figure 2.24: Plan View of Transect Through Ridge Piezometers
Figure 2.25: Hydrographs of Ridge Water Level Monitoring Bores Related to Timing of Mining
Figure 2.26:
Cross Section Through Narrow Swamp and East Wolgan Swamp showing Topography, Geology, Mining Areas and Related Height of Fracturing
Photograph 2.8: Photos (2013) of East Wolgan Swamp immediately upstream (left) and downstream (right) of the cavity into which surface water flows were lost between 2008 and 2010
As detailed above and in Section 8.2, in the case of East Wolgan Swamp, the combined impacts of long term and then intermittent high flow mine water discharge, incised valleys with steep slopes, major geological structure zones, mine design and mine subsidence caused formation of a cavity which led to the loss of surface water flows between 2008 and 2010. The cracking which caused the cavity subsequently infilled through natural sedimentation processes and surface water flows have been recorded downstream of the cavity since August 2010.

The proposed decrease in longwall panel or void width from 315 m to 260 m for the future longwalls retreating below similar geological fault structures are therefore likely to significantly reduce the potential for surface waters to penetrate deep into the overburden due to the increased compression arching behaviour that will develop above sub-critical longwall panel geometries.

East Wolgan Swamp Rehabilitation

Springvale Coal has applied for approvals from SEWPac (now DoE) and OEH to enable rehabilitation works on East Wolgan Swamp to be carried out. These applications were made on 16 August 2012. Springvale Coal obtained approval from the former Federal Department of Sustainability, Environment, Water, Populations and Communities on 21 September 2012. OEH approved the undertaking restoration actions at East Wolgan Swamp, following a number of consultation meetings, and issued a certificate under Section 95 of the TSC Act on 25 November 2013.

Rehabilitation Works

Rehabilitation works at East Wolgan Swamp commenced in January 2014 and the following activities are being undertaken:

- detailed vegetation mapping (before rehabilitation)
- swamp re-hydration works- construction and strategic placement of coir logs, sandbag and jute mesh weirs (*Photograph 2.9*).
- direct seeding - collecting seeds off targeted species already within the swamp and placing in rehabilitation area (*Photograph 2.10*).
- brush matting - collecting branches from vegetation in the area adjacent and placing it in the rehabilitation area to encourage and provide cover for new growth (*Photograph 2.10*).

Excavation and rehabilitation of the slumping sites will be conducted after the summer thunderstorm season, which has caused high intensity rainfall events over the past several years. These events have caused significant erosion of swamp peat / soil at the slumping sites in East Wolgan Swamp and it is intended to avoid rehabilitation works of these sites during this period.
Photograph 2.9: (2014) East Wolgan Swamp Rehabilitation – Water Level Spreader / Retainer Structures

Photograph 2.10: (2014) East Wolgan Swamp Rehabilitation – Direct Seeding and Brush Matting
Kangaroo Creek Shrub Swamp Hydrology

Figure 2.27 shows hydrographs of the swamp piezometers installed at Kangaroo Creek Swamp together with the time of longwall mining beneath the piezometers (indicated by the vertical black lines) and the cumulative rainfall deviation which is indicated by the black trend line. The cumulative rainfall deviation trend is calculated from difference between the measured rainfall and the long term average rainfall. Where the trend is negative, measured rainfall is less than average and where it is positive measured rainfall is greater than average. The cumulative rainfall deviation trend is calculated from the commencement of groundwater level monitoring activities on the Newnes Plateau in 2002. Note that there is a very strong correlation between the trend line of standing water level beneath the swamp and the cumulative rainfall deviation trend line for the KC2 piezometer over the eight years of monitoring at this location. This data indicated that the swamp is periodically waterlogged at this location (standing water levels respond to rainfall). The data also indicates that there have been no significant impacts to swamp hydrology in response to longwall mining at KC2.

Groundwater levels at KC1 appear to have been affected by the longwall mining of Angus Place LW940 which was below the lower reaches of the swamp, as there was a sudden reduction in groundwater levels in June 2008, unrelated to rainfall. As shown in Figure 2.27, measured groundwater levels respond to rainfall events, and standing water levels reach pre-mining levels after significant rainfall events. However, for KC1 measured groundwater levels have yet to completely return to pre-mining levels.

Kangaroo Creek Shrub Swamp is fed by a perennial spring. This spring, which in turn is fed by the aquifer-aquitard systems within the Burralow Formation, was unaffected by mining and the creek remained permanently wet below the spring. This, together with the presence of healthy hanging swamps along the valley walls surrounding Kangaroo Creek Shrub Swamp, indicates that the water supply from the spring and valley wall seepage has not been interrupted by longwall mining and that groundwater inputs to the swamp hydrological system remain intact. Photograph 2.11, Photograph 2.12 and Photograph 2.13 illustrate the Burralow Formation aquifer / aquitard system have not been affected by longwall mining evidenced by the spring, Waterhole and Hanging Swamps surrounding Kangaroo Creek Shrub Swamp. Flora monitoring at Kangaroo Creek Shrub Swamp indicated no trend of decreasing condition and that species abundance is not declining. The available evidence indicates that underground mining has not resulted in any negative effects on Kangaroo Creek Shrub Swamp. Investigation of mining related impacts at Kangaroo Creek Swamp showed that high levels of differential subsidence movements were measured, including strains (up to 6 mm/m tensile and 26 mm/m compressive) and tilts (up to 13 mm/m). The reasons for the high levels of differential movement are as follows.

- **Mine Design**: Longwall Void Width (w) to Depth of Cover (H) ratio of 0.94 to 1.04 (Critical Width). NB These are the highest w/H ratios of any of the longwalls at Angus Place and Springvale.

- **Major Geological Structure Zone**: Kangaroo Creek is located within the Kangaroo Creek lineament, which has been identified as “Type 1” Geological Structure Zone.

- **Topography**: Valley slope angles >18 degrees.

- **Location of Kangaroo Creek Swamp**: being near western end of Angus Place Colliery’s LW940 and LW950.

Investigations have concluded that for the Kangaroo Creek Swamp, the presence of major fault zones and incised valleys in combination with mine design factors caused localised hydrological impacts. Mine planning and mine design processes used for the Springvale and Angus Place Mine Extension Projects have specifically avoided the combination of factors which caused impacts in historical mining areas.
Figure 2.27: Hydrographs of the swamp piezometers installed at Kangaroo Creek Swamp showing timing of longwall mining and cumulative rainfall deviation.
Photograph 2.11: Spring at Kangaroo Creek Shrub Swamp

Photograph 2.12: Hanging Swamp above Kangaroo Creek Shrub Swamp
Photograph 2.13: Waterhole Upstream of Kangaroo Creek Shrub Swamp
2.6.2.7 Summary of Historical Impacts to Swamps from Mining Related Activities

There are watercourses within the Project Application Area which have been exposed to potential mine-induced subsidence. Longwalls have been extracted directly or partially beneath 13 shrub swamps and 26 hanging swamps. Surface impacts have been observed at five swamps including Kangaroo Creek Swamp, Narrow Swamp North, Narrow Swamp South, East Wolgan Swamp and Junction Swamp.

These have been investigated and where impacts have been observed, these have been identified as largely the result of mine water discharge.

Mine Water Discharge Impacts to Newnes Plateau Shrub Swamps

Investigations have identified that erosional and flora dieback impacts at Narrow Swamp North, Narrow Swamp South, East Wolgan Swamp and Junction Swamp were caused by changes to swamp hydrology related to mine water discharge and were not related to subsidence. As a result of this finding, future mine dewatering systems have been designed to ensure that discharge of mine water to Newnes Plateau Shrub Swamps is avoided.

Subsidence Effects to Swamp Hydrology

Subsidence effects to aspects of swamp hydrology have been noted at two swamps (Kangaroo Creek Swamp and East Wolgan Swamp). In both of these cases investigations have revealed that mine design was a primary causative factor. The ratio of longwall mining void width to depth of cover over mine workings was identified to be in the critical subsidence behaviour range. Following this investigation, the mine design was modified for all future proposed mining areas in the vicinity of Newnes Plateau Shrub Swamps to ensure that the ratio of longwall mining void width to depth of cover over mine workings was in the sub-critical subsidence behaviour range. No subsidence effects to swamp hydrology or flora communities have been identified in areas where sub-critical mine design have been used in the past.

Kangaroo Creek Swamp

Changes to standing water levels as measured by KC1 swamp piezometer were recorded following mining. Swamp hydration from a spring upstream of the swamp and valley wall seepage associated with the Burralow Formation geology has not been affected by longwall mining. Vegetation monitoring at Kangaroo Creek Swamp has not demonstrated changes to the flora community within the swamp.

With the one exception of Kangaroo Creek Swamp, analysis indicates no significant difference in water level variability between swamps that have been undermined and those that have not. As discussed above, mine design changes have now been implemented to prevent any future subsidence impacts to Newnes Plateau Shrub Swamps, as identified at Kangaroo Creek.

East Wolgan Swamp

In the case of East Wolgan Swamp as discussed below, the combined impacts of long term and then intermittent high flow mine water discharge, incised valleys with steep slopes, major geological structure zones, mine design and mine subsidence caused formation of a cavity which led to the loss of surface water flows between 2008 and 2010. The cracking which caused the cavity subsequently infilled through natural sedimentation processes and surface water flows have been recorded downstream of the cavity since August 2010. At East Wolgan Swamp, the following impacts were found to be caused by mine water discharge:

- dieback of vegetation (along path of mine water flows);
- possible changes to swamp soil/water chemistry (changes due to elevated EC(800 µS/cm – 1000 µS/cm) and high pH (8-9) of mine water flows);
- changes in swamp hydrology (wetting / drying cycles due to mine water discharge);
- erosion (along path of mine water flows);
- elevated sediment loads (along path of mine water flows); and
- slumping of peat due to erosion of sub-surface sediments (in two locations).

As a result of these findings, future mine dewatering systems have been designed to ensure that discharge of mine water to Newnes Plateau Shrub Swamps is avoided.

As discussed above, mine design changes have now been implemented to prevent future subsidence impacts to Newnes Plateau Shrub Swamps. A specific rehabilitation strategy has been prepared to prevent further impacts to East Wolgan Swamp and to assist the recovery of the swamp vegetation community. This strategy has been approved by DoE and OEH and rehabilitation works are currently being conducted.

2.7 Hydrology

The Project Application Area traverses both the Wolgan River/Carne Creek and Coxs River catchments. The Coxs River Catchment and the Wolgan River Catchment are both under the jurisdiction of the Hawkesbury-Nepean Catchment Management Authority, although the Coxs River is listed within the boundary of the Sydney Drinking Water Catchment under the State Environmental Planning Policy (Sydney Drinking Water Catchment). Spatial details of these surface water catchments and their boundaries are presented in Figure 2.28. Both the Wolgan River and the Coxs Rivers are connected to watercourses and creeks within the Project Application Area. Details of the catchment and associated watercourses are summarised in Table 2.7.

Table 2.7: Areas of Main Catchments and Sub-Catchments of Relevance to the Project

<table>
<thead>
<tr>
<th>Main Catchment</th>
<th>Sub-Catchment</th>
<th>Associated Watercourses</th>
<th>Sub Catchment Area (ha)</th>
<th>% Sub-Catchment Area within the Project Application Area (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coxs River Catchment</td>
<td>Coxs River</td>
<td>Springvale Creek & Kangaroo Creek</td>
<td>13,026</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Marrangaroo Creek</td>
<td>Unnamed watercourses south of Project boundary</td>
<td>5,495</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Pipers Flat Creek</td>
<td>Unnamed watercourses south of Project boundary</td>
<td>5,948</td>
<td>0%</td>
</tr>
<tr>
<td>Wolgan River Catchment</td>
<td>Wolgan River Western Branch</td>
<td>Wolgan River</td>
<td>8,526</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>Wolgan River Eastern Branch</td>
<td>Crane Creek</td>
<td>8,597</td>
<td>30%</td>
</tr>
<tr>
<td>Colo River Catchment</td>
<td>Nine Mile Creek/ Bungleboori</td>
<td>Nine Mile Creek.</td>
<td>4,840</td>
<td>1%</td>
</tr>
</tbody>
</table>
Springvale Mine is regulated by the Greater Metropolitan Region Water Sharing Plan established under Section 50 of the Water Management Act 2000. The Project Application Area straddles the boundary of the Sydney Basin Coxs River Groundwater Source and the Sydney Basin Richmond Groundwater Source. The Project location in relation to the Sydney Basin Richmond and Sydney Basin Coxs River Groundwater Source geographical boundaries is shown as an inset in Figure 2.28.

The Project Application Area lies across the boundary of two River Management Zones, the Wywandy River Management Zone of the Upper Nepean and Upstream Warragamba Water Source, and the Colo River Management Zone of the Hawkesbury and Lower Nepean Water Source. Each of these water sources are situated within the Greater Metropolitan Region Water Sharing Plan. The Project location in relation to these surface water source boundaries is shown as an inset in Figure 2.28.

2.8 Ecology

2.8.1 Habitat

The Project Application Area is part of a larger contiguous area of native vegetation and is characterised by open forests, exposed rocky areas, riparian zones and swamps. Groundcover exhibits diverse assemblages of grasses, herbs and prostrate shrubs.

The majority of the Project Application Area has been subject to Forestry Corporation of NSW selective timber harvesting for a sustained period of time. Recent fires are evident in some parts of the Project Application Area. As a consequence of forest harvesting and fires, large areas of forest are relatively young with a low to moderate density of hollow-bearing trees. Fallen timber, groundcover and leaf litter provide shelter and foraging for a number of fauna types. Habitats within the Project Application Area support a diversity of faunal types.

2.8.2 Threatened Flora and Fauna

Literature reviews and database searches NPWS Atlas of NSW Wildlife (TSC Act) and EPBC Act Protected Matters Search Tool reveal 29 threatened flora species and 55 threatened fauna species within 10 kilometres of the Project Application Area that are listed under the TSC Act and/or the EPBC Act. Listed species and their distribution across the Project Application Area are provided in Section 10.3.

A variety of field survey techniques were employed over the course of fieldwork for this assessment to record a representative sample of flora and fauna guilds across the defined study area for the surveys.

In addition to these ecological surveys, other surveys in the locality were reviewed and used in consideration of adequacy of survey effort and potential for occurrence of threatened species. Apart from Project specific survey, seasonal vegetation monitoring has been undertaken at the site since 2003 and annual fauna monitoring at the site since 2004 in both shrubs swamps and surrounding woodlands.

Threatened Flora Species

Of the threatened flora species identified in the database searches and field surveys across the Terrestrial Ecology Study Area (Section 2.4.2), the following have potential to be impacted by the Project:

- *Acacia bynoeana*;
- *Boronia deanei* subsp. *Deanei*;
- *Eucalyptus pulverulenta*;
- *Prasophyllum fuscum*;
- *Persoonia acerosa*;
- *Prostanthera cryptandroides* subsp. *cryptandroides*; and
- *Thesium australe*.
Threatened Fauna Species

Of the threatened fauna species identified in the database searches and field surveys across the Terrestrial Ecology Study Area (Section 2.4.2), the following have potential to be impacted by the Project:

- Anthochaera phrygia;
- Chalinolobus dwyeri;
- Dasyurus maculatus maculatus;
- Eulamprus leuraensis;
- Heleioporus australiacus;
- Hoplocephalus bungaroides;
- Isoodon obesulus obesulus;
- Litoria littlejohni;
- Mixophyes balbus;
- Petrogale penicillata;
- Phascolarctos cinereus; and
- Pseudomys novaehollandiae.

2.8.3 Endangered Ecological Communities and Swamps

Flora surveys, including ground-truthing of vegetation communities, were undertaken within the Project Application Area. Those areas within the Project Application Area that were not sampled have been mapped using the Vegetation Mapping of the Western Blue Mountains (DEC, 2006).

Table 2.8 lists the vegetation communities within the Project Application Area and the associated mapping unit in accordance with DEC (2006).
A number of vegetation communities that have been mapped by DEC (2006) were not sampled due to difficult terrain or the vegetation occurring well outside of any proposed activities within the Project. Those vegetation communities that were not sampled include:

- MU3 Hillslope Talus Mountain Gum - Brown Stringybark - Grey Gum - Broad-leaved Hickory Moist Forest;
- MU15 Tableland Hollows Black Gum - Black Sally Open Forest;
- MU35 Tableland Gully Mountain Gum - Broad-leaved Peppermint Grassy Forest;
- MU36 Tableland Apple Box - Bursaria Grassy Open Forest;
- MU37 Coxs Permian Red Stringybark - Brittle Gum Woodland;
- MU58 Acacia Thickets;

Table 2.8: Vegetation Communities within the Project Application Area

<table>
<thead>
<tr>
<th>Vegetation Community</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU3 Hillslope Talus Mountain Gum - Brown Stringybark - Grey Gum - Broad-leaved Hickory Moist Forest</td>
<td>2.42</td>
</tr>
<tr>
<td>MU7 Newnes Plateau Narrow-leaved Peppermint - Mountain Gum - Brown Stringybark Layered Forest</td>
<td>958.49</td>
</tr>
<tr>
<td>MU8 Newnes Sheltered Peppermint - Brown Barrel Shrubby Forest</td>
<td>206.43</td>
</tr>
<tr>
<td>MU11 Tableland Gully Snow Gum - Ribbon Gum Montane Grassy Forest</td>
<td>22.11</td>
</tr>
<tr>
<td>MU14 Tableland Mountain Gum - Snow Gum - Daviesia Montane Open Forest</td>
<td>129.19</td>
</tr>
<tr>
<td>MU15 Tableland Hollows Black Gum - Black Sally Open Forest</td>
<td>9.33</td>
</tr>
<tr>
<td>MU26 Newnes Plateau Narrow-leaved Peppermint - Silver-top Ash Layered Open Forest</td>
<td>1,631.58</td>
</tr>
<tr>
<td>MU26a Newnes Plateau Gum Hollows variant: Brittle Gum - Mountain Gum, Scribbly Gum - Snow Gum Shrubby Open Forest</td>
<td>374.36</td>
</tr>
<tr>
<td>MU28 Sandstone Plateau And Ridge Scribbly Gum - Silver-top Ash Shrubby Woodland</td>
<td>516.66</td>
</tr>
<tr>
<td>MU29 Sandstone Slopes Sydney Peppermint Shrubby Forest</td>
<td>137.69</td>
</tr>
<tr>
<td>MU30 Exposed Blue Mountains Sydney Peppermint - Silver-top Ash Shrubby Woodland</td>
<td>361.43</td>
</tr>
<tr>
<td>MU35 Tableland Gully Mountain Gum - Broad-leaved Peppermint Grassy Forest</td>
<td>31.06</td>
</tr>
<tr>
<td>MU36 Tableland Apple Box - Bursaria Grassy Open Forest</td>
<td>0.99</td>
</tr>
<tr>
<td>MU37 Coxs Permian Red Stringybark - Brittle Gum Woodland</td>
<td>212.39</td>
</tr>
<tr>
<td>MU43 Pagoda Rock Sparse Shrubland</td>
<td>137.17</td>
</tr>
<tr>
<td>MU44 Sandstone Plateaux Tea Tree - Dwarf Sheoak - Banksia Rocky Heath</td>
<td>139.37</td>
</tr>
<tr>
<td>MU45 Newnes Plateau Tea Tree - Banksia - Mallee Heath</td>
<td>36.65</td>
</tr>
<tr>
<td>MU46 Newnes Plateau Dwarf Sheoak - Banksia Heath</td>
<td>6.47</td>
</tr>
<tr>
<td>MU50 Newnes Plateau Shrub Swamp</td>
<td>114.95</td>
</tr>
<tr>
<td>MU51 Newnes Plateau Hanging Swamp</td>
<td>47.98</td>
</tr>
<tr>
<td>MU52 Newnes Plateau Rush - Sedge - Snow Gum Hollow Wooded Heath</td>
<td>48.57</td>
</tr>
<tr>
<td>MU58 Acacia Thickets</td>
<td>2.69</td>
</tr>
<tr>
<td>MU59 Non-native Vegetation - Pine plantation / woodlot / shelter</td>
<td>277.76</td>
</tr>
<tr>
<td>MU60 Non-native Vegetation - Other exotics (willow etc)</td>
<td>1.84</td>
</tr>
<tr>
<td>MU61 Unclassified (<1ha patch of remnant vegetation adjacent / within cleared lands)</td>
<td>6.65</td>
</tr>
<tr>
<td>MU62 Cleared and Severely Disturbed Lands</td>
<td>396.31</td>
</tr>
<tr>
<td>Total</td>
<td>5,810.54</td>
</tr>
</tbody>
</table>
MU60 Non-native Vegetation - Other exotics (willow etc); and
MU61 Unclassified - (<1 ha patch of remnant vegetation adjacent / within cleared lands).

Four EECs were recorded within the Study Area. These were:

- Temperate Highland Peat Swamps on Sandstone;
- Newnes Plateau Shrub Swamp in the Sydney Basin Bioregion (Newnes Plateau Shrub Swamp);
- Montane Peatlands and Swamps of the Sydney Basin Bioregion (Montane Peatlands and Swamps); and

- Tablelands Snow Gum, Black Sallee, Candlebark and Ribbon Gum Grassy Woodland in the South Eastern Highlands, Sydney Basin, South East Corner and NSW South Western Slopes Bioregions (Tablelands Snow Gum, Black Sallee, Candlebark and Ribbon Gum Grassy Woodland).

The distribution of the shrub and hanging swamp types across the Project Application Area is provided in Figure 2.29. Temperate Highland Peat Swamps on Sandstone is listed as an EEC under the EPBC Act. Vegetation communities recorded within the Project Application Area that correspond to this EEC are MU50 – Newnes Plateau Shrub Swamp, MU51 – Newnes Plateau Hanging Swamp and MU52 – Newnes Plateau Rush – Sedge Snow Gum Hollow Wooded Heath as described and mapped within DEC (2006).

Newnes Plateau Shrub Swamp is listed as an EEC under the TSC Act. One vegetation community recorded within the Project Application Area correspond to this EEC, namely MU50 – Newnes Plateau Shrub Swamp.

Montane Peatlands and Swamps are listed as an EEC under the TSC Act. MU53 Mountain Hollow Grassy Fen is regarded by DEC (2006) as forming part of this EEC.

Tablelands Snow Gum, Black Sallee, Candlebark and Ribbon Gum Grassy Woodland is an EEC listed under the TSC Act. Vegetation communities recorded within the Project Application Area that correspond to this EEC are MU11 – Tableland Gully Snow Gum - Ribbon Gum Montane Grassy Forest and MU15 – Tableland Hollows Black Gum – Black Sally Open Forest.

2.8.3.1 MU50 – Newnes Plateau Shrub Swamps

Shrub swamps develop on the Newnes Plateau at altitudes in excess of 1,000 m in the bases of valleys which are subject to periodic to permanent waterlogging from groundwater, surface water and direct rainfall. The base of these swamps characteristically have low slope angles which means that surface water flows have a relatively low velocity and water retention is high. Claystone units of the Burralow Formation also reduce the rate of percolation of water into the deeper sediments. The Burralow Formation with its suite of aquitards decreases the hydraulic gradient and thus reduces the degree of percolation of groundwater to the units below. Instead, much of the groundwater present within the Burralow Formation is redirected laterally down-dip to discharge points in nearby gullies. Precipitation is thus supplemented by moisture from groundwater sources to form several discharge horizons along the course of the host creek in which a shrub swamp is located.

A total of 37 individual shrub swamps are recorded within the Project Application Area, covering a total of 30.84 ha.
Figure 2.29: Distribution of Swamps Across the Project Application Area
The shrub swamps in which water level monitoring is carried out across the Project Application Area, have been classified into two broad types based on the predominant source of water supplying the swamp. The classifications have been made by Aurecon (2012) and are used to help identify water level trends. The two classifications are:

- **‘Type A – periodically waterlogged’,** show large and reasonably rapid variations in water level in response to significant rainfall events.
- **‘Type C – permanently waterlogged’,** display a reasonably static water level that is relatively unaffected by climatic conditions but depend largely on groundwater sources. Since the percentage of groundwater contribution to the swamp hydrogeology will vary from swamp to swamp, there may be a range of hydrogeological conditions observed for this swamp type.

Many shrub swamps in the Project Application Area show characteristics of both Type A and Type C classification or “mixed-type” swamps. The occurrence and sustainability of the shrub swamps are multifactorial, involving a complex interplay between topography, hydrological regimes and geology. The formation and persistence of the shrub swamps are intrinsically associated with the aquitard units within the Burralow Formation as noted above. **Section 2.6.2** describes in detail several cases studies with regards to the impacts of mining on swamps on the Newnes Plateau.

A photograph of a typical shrub swamp in the Project Application Area is provided in **Photograph 2.14.**

2.8.3.2 MU51 – Newnes Plateau Hanging Swamps

Hanging swamps develop on the Newnes Plateau at altitudes in excess of 1,000 m on the flanks of valleys which are subject to infrequent waterlogging from perched groundwater systems, surface runoff and direct rainfall. These swamps have a characteristic floral assemblage which is largely a result of the physical location on the flanks of valleys and the hydrological regime. The floral assemblage differs from that of shrub swamps. The base of hanging swamps is generally at a steeper slope angle than shrub swamps, which means that hanging swamps are less able to retain water as it discharges away along the greater slope angles.

A total of 75 hanging swamps are recorded within the Project Application Area, covering a total area of 18.84 ha.

A photograph of a typical hanging swamp in the Project Application Area is provided in **Photograph 2.15.**

The correlation of local geology and the position of hanging and shrub swamps are evident in the conceptual geological cross section presented in **Figure 2.30.** The importance of Newnes Plateau geology in swamp formation and hydrology has been investigated extensively. Most recently, McHugh (2011; 2013) has studied the upper stratigraphy of the Springvale Mine and Angus Place Colliery leases and has identified that there is a lithological and topographic link between the presence of the Burralow Formation and the occurrence of the hanging swamps. Several of the claystone horizons have been found to act as aquitards, or semi-permeable layers and decrease the hydraulic gradient of rainwater and groundwater movement percolating through the weathered and semi-weathered strata. This provides a permanent water source for the formation and maintenance of the hanging swamps. The presence of these aquitards in the Burralow sequence also performs a vital function in the presence and persistence of the Newnes Plateau Shrub Swamps as discussed in **Section 2.8.2.1.** Details of the importance of Newnes Plateau geology and hydrogeology and interactions with Newnes Plateau swamps are provided in **Section 2.6.2.3.**
Photograph 2.14: Typical Newnes Plateau Shrub Swamp in the Project Application Area

Photograph 2.15: Typical Newnes Plateau Hanging Swamp
Figure 2.30: Conceptual Cross Section Through Relevant Strata
2.8.3.3 **MU52 – Newnes Plateau Rush – Sedge Snow Gum Hollow Wooded Heath**

A total of 11 Newnes Plateau Rush – Sedge Snow Gum Hollow Wooded Heath swamps are recorded within the Project Application Area, covering a total of 44.34 ha. This vegetation community is found in open depressions that occur along the tops of broad ridgelines. These depressions are poorly drained and collect permanent groundwater seepage forming wetlands of dense heath. This vegetation community is found over a limited extent in the central portion of the Project Application Area.

A photograph of a typical Rush – Sedge Snow Gum Hollow Wooded Heath swamp in the Project Application Area is provided in Photograph 2.16.

2.8.3.4 **MU11 - Tablelands Snow Gum, Black Sallee, Candlebark and Ribbon Gum Grassy Woodland**

A small, and highly disturbed area (0.22 ha) of this community occurs within clearing envelope for the SDWTS connection and it occurs as an open-forest, woodland or open woodland. This community may also occur as a secondary grassland where the trees have been removed, but the groundlayer remains. The main tree species are *Eucalyptus pauciflora* (Snow Gum), *E. rubida* (Candlebark), *E. stellulata* (Back Sallee) and *E. viminalis* (Ribbon Gum), either alone or in various combinations. The community commonly occurs on valley floors, margins of frost hollows and on footslopes and undulating hills.
Photograph 2.16: Typical Newnes Plateau Rush – Sedge Snow Gum Hollow Wooded Heath Swamp
2.8.3.5 Past Undermining of Swamps

Angus Place and Springvale Collieries have extracted beneath 13 shrub swamps and 26 hanging swamps. A summary of the mining geometries for the longwalls which have been extracted beneath these swamps is provided in Table 2.9. Surface impacts have been observed at five of these swamps, being Narrow Swamp North, Narrow Swamp South, East Wolgan Swamp, Kangaroo Creek Swamp and Junction Swamp (Figure 2.30). Investigations into these impacts were undertaken by Goldney et al (2010), who was engaged by the former Federal Department of the Environment, Water, Heritage and the Arts (which changed to SEWPaC and is now Department of the Environment). Goldney et al (2010) found that swamp impacts were due to a combination of factors, the most important being mine water discharge and subsidence, although the relative contribution of each could not be determined. The Project will not discharge mine water into watercourse upstream of swamps and the longwall void widths have been narrowed to reduce the potential for subsidence effects.

Table 2.9: Mining Geometries for Previously Extracted Longwalls at Angus Place Colliery and Springvale Mine

<table>
<thead>
<tr>
<th>Longwalls</th>
<th>Void Width (m)</th>
<th>Depth of Cover (m)</th>
<th>Width to Depth Ratio (WH)</th>
<th>Extracted Seam Thickness (m)</th>
<th>Maximum Subsidence (m)</th>
<th>Strains (mm/m)</th>
<th>Number of Swamps Undermined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angus Place (LW1 to LW24)</td>
<td>210, 230, 260</td>
<td>220 to 360</td>
<td>0.70 to 0.95</td>
<td>2.8 to 3.2</td>
<td>1.0 to 1.2</td>
<td>Typically between 3 tensile and 5 comp.</td>
<td>1 shrub swamp, and 1 partial hanging swamp</td>
</tr>
<tr>
<td>Angus Place (LW920 to LW970)</td>
<td>260 and 290</td>
<td>220 to 380</td>
<td>0.75 to 1.0</td>
<td>3.1 to 3.4</td>
<td>1.0 to 1.2</td>
<td>Typically between 3 tensile and 5 comp.</td>
<td>7 fully and 2 partial shrub swamps, and 9 fully and 2 partial hanging swamps</td>
</tr>
<tr>
<td>Springvale (LW1 and LW401 to LW414)</td>
<td>255, 265, 315</td>
<td>220 to 420</td>
<td>0.75 to 1.0</td>
<td>2.8 to 3.4</td>
<td>1.0 to 1.4</td>
<td>Typically between 1 tensile and 5 comp.</td>
<td>1 fully and 2 partial shrub swamps, and 11 fully and 3 partial hanging swamps</td>
</tr>
</tbody>
</table>

2.8.4 Enforceable Undertaking

On 12 October 2011, Springvale Coal Pty Limited and Centennial Angus Place Pty Limited entered into an Enforceable Undertaking under section 486DA of the EPBC Act.

Without conceding that it has breached the EPBC Act or any other Act, but acknowledging at the time that the Minister considered that through underground mining and mine water discharges, Centennial Coal’s operations had a significant impact on THPSS, a federally listed endangered ecological community. Springvale Coal and Angus Place Pty Limited undertook to pay $1,450,000 for a four year research program.

The objectives of this research program are to:

1. Provide the necessary knowledge to conserve, manage and restore THPSS;
2. Use that knowledge to promote best management practices for these areas;
3. Transfer knowledge gained in the programme to agencies, land managers and relevant stakeholders; and
4. Maximise the educational and training opportunities of the Program.
The research themes under the research programme are:

1. Understanding the THPSS which includes detailed mapping, location, distribution and extent of the swamps, including those under threat.
2. Understanding swamp systems, including water balance and dynamics, the functionality of peatland swamps, environmental history and origins, ecology/biodiversity of major structural species and contribution of THPSS to the landscape.
3. Understanding land management and impacts, including condition status mapping and trends.
4. Application of understanding, including monitoring of reference sites and thresholds for recovery and resilience.

In 2012, approximately $900,000 of the research fund had been allocated to five projects, with additional funding set aside to support swamp hydrology research when a suitable project was identified by the Steering Committee. The Committee meets twice annually and holds an annual workshop to review the status of the research findings and outcomes.

2.8.5 Aquatic Ecology

The aquatic macroinvertebrate fauna within the Wolgan River and Carne Creek consist primarily of insect families plus a few crustacean, worms, bivalve mollusc and mite taxa.

Eastern Banjo Frogs and Spotted Marsh Frogs have been heard at the Wolgan River (upstream) and tadpoles have been recorded at two sites on the river. The eel (*Anguilla* sp.) is the only fish species observed in the Wolgan River in recent aquatic surveys. Fish and larvae, most likely Mountain Galaxias, have been sighted in Carne Creek (*Appendix G*).

The macroinvertebrate fauna downstream of the shrub swamps is quite diverse. Fauna consists primarily of insect families, crustaceans, worms, bivalves, freshwater mites, leeches and springtails.

Filamentous green algae, Swamp Clubrush and Charophytes were observed at the Wolgan River. Jointed Rush has been recorded at Wolgan River on one occasion during the surveys. No macrophytes or algae were observed at Carne Creek.

2.8.6 Stygofauna

Stygofauna is a collective term for subterranean aquatic fauna including crustaceans, worms, snails, insects, other invertebrate groups and fish.

Stygofauna were sampled by hand bailers from 11 sites in Sunnyside East, Gang Gang, Gang Gang West and Carne West Swamps yielding water volumes of between 1.5 L and 15 L. The swamp samples revealed 410 invertebrates, of which four likely and 6 possible stygofauna were identified. The likely animals were cyclopoid copepods, harpacticoid copepods, copepod nauplii and the syncarid Bathynellidae, all of which are crustaceans. The possible stygofauna were Acarina (mites), Phreatoicidae (isopods), Nematoda (round worms), Oligochaeta (segmented worms), Rotifera (wheel animals) and Tardigrada (water bears) (*Appendix G*).

In addition, samples were collected from four boreholes in the unconfined Banks Wall aquifer, with samples ranging from 15 L to 16 L. These samples revealed 16 invertebrates, of which one cyclopoid copepod was identified as a likely stygofauna. One Acarina was identified as possible stygofauna.

There is limited known occurrence of stygofauna across the Project Application Area. To date, samples from the swamp contained four likely (*Cyclopoid Copepoda, Harpacticoid copepoda, Copepod nauplii and
Bathynellid syncarids) and three possible stygofauna taxa (Rotifera, Tardigrada and Phreatoicid isopods).
Groundwater samples at Sunnyside East Swamp contained one likely (Cyclopoid copepod) and two possible stygofauna taxa (Acarina and Rotifera) in the shallow unconfined aquifer in the Banks Wall Sandstone.

Section 10.3 provides information on the expected presence of stygofauna in shallow aquifers and the predicted lack of stygofauna in deeper aquifers such as those below the Mount York Claystone.

2.9 Climate
The climate in the region is typical of a cool temperate mountain climate, characterised by cold winters and warm summers. The highest temperatures occur throughout December, January and February, with the coolest temperatures occurring in July. Snow and/or sleet are common in winter months.

2.9.1 Data Sources
Long-term average climate data has been sourced from the Bureau of Meteorology (BoM) website (BoM, 2012).

A number of weather stations have been identified near the Project Application Area and are listed below in order of preference, taking into consideration locality, altitude and quality of data.

- Lidsdale (Maddox Lane) – Station No. 63132. Located just 5 kilometres from the pit top. This is the most representative and up to date dataset for Springvale Mine;
- Lithgow (Birdwood Street) – Station No. 63224. Located 15 kilometres to the south of the pit top; and
- Bathurst Agricultural Station – Station No. 63005. Located approximately 47 kilometres to the west of the pit top.

2.9.2 Rainfall
Rainfall throughout the year is relatively uniform (Table 2.10 and Figure 2.31). However, rainfall is slightly higher during the months of October through to March. January and February are the wettest months. The intensity of the rainfall is locally affected by the orographic influence of the Great Dividing Range. The long term average annual rainfall from the collated record is 755.8 mm at Lidsdale and 1,072 mm at Newnes Plateau.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>85.1</td>
<td>80.1</td>
<td>83.8</td>
<td>42.1</td>
<td>50.6</td>
<td>48.8</td>
<td>51.6</td>
<td>65.5</td>
<td>53.7</td>
<td>68.4</td>
<td>73.4</td>
<td>72.9</td>
<td>766.1</td>
</tr>
<tr>
<td>Lowest</td>
<td>8</td>
<td>5.6</td>
<td>3.8</td>
<td>1.2</td>
<td>2.6</td>
<td>2.6</td>
<td>2.7</td>
<td>1.8</td>
<td>3.4</td>
<td>2.4</td>
<td>7.6</td>
<td>0</td>
<td>329.8</td>
</tr>
<tr>
<td>5th %ile</td>
<td>19.3</td>
<td>11.7</td>
<td>8.7</td>
<td>3.2</td>
<td>5.7</td>
<td>7.7</td>
<td>11.4</td>
<td>8.0</td>
<td>11.0</td>
<td>11.0</td>
<td>13.0</td>
<td>20.4</td>
<td>465.4</td>
</tr>
<tr>
<td>10th %ile</td>
<td>24.9</td>
<td>18.2</td>
<td>14.2</td>
<td>6.3</td>
<td>7.7</td>
<td>16.5</td>
<td>18.0</td>
<td>16.0</td>
<td>19.6</td>
<td>14.6</td>
<td>18.7</td>
<td>25.7</td>
<td>515.1</td>
</tr>
<tr>
<td>Median</td>
<td>76.6</td>
<td>71.1</td>
<td>50.4</td>
<td>32.0</td>
<td>45.0</td>
<td>39.8</td>
<td>43.2</td>
<td>51.6</td>
<td>52.0</td>
<td>73.1</td>
<td>82.5</td>
<td>82.3</td>
<td>765.3</td>
</tr>
<tr>
<td>90th %ile</td>
<td>171.3</td>
<td>132.7</td>
<td>119.7</td>
<td>63.8</td>
<td>102.1</td>
<td>83.5</td>
<td>91.2</td>
<td>121.7</td>
<td>91.2</td>
<td>124.2</td>
<td>142.1</td>
<td>133.4</td>
<td>972.7</td>
</tr>
<tr>
<td>95th %ile</td>
<td>191.5</td>
<td>178.4</td>
<td>180.7</td>
<td>122.1</td>
<td>123.9</td>
<td>113.2</td>
<td>98.4</td>
<td>202.6</td>
<td>99.7</td>
<td>132.7</td>
<td>151.9</td>
<td>161.7</td>
<td>1165.6</td>
</tr>
<tr>
<td>Highest</td>
<td>213.6</td>
<td>270.4</td>
<td>270.4</td>
<td>202.6</td>
<td>131.2</td>
<td>228.3</td>
<td>214</td>
<td>363.8</td>
<td>123</td>
<td>228.4</td>
<td>164.7</td>
<td>217</td>
<td>1260.3</td>
</tr>
</tbody>
</table>
The Newnes Forest Centre on the Newnes Plateau has been recording meteorological data since 1938. **Table 2.11** provides the long term rainfall means for this station from 1938 to 2002.

Table 2.11 Newnes Forest Centre Rainfall Data (mm)

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean monthly</td>
<td>121</td>
<td>114</td>
<td>103</td>
<td>79</td>
<td>81</td>
<td>83</td>
<td>68</td>
<td>84</td>
<td>68</td>
<td>92</td>
<td>89</td>
<td>91</td>
<td>1072</td>
</tr>
<tr>
<td>10th percentile</td>
<td>133</td>
<td>91</td>
<td>79</td>
<td>59</td>
<td>63</td>
<td>63</td>
<td>54</td>
<td>67</td>
<td>64</td>
<td>81</td>
<td>79</td>
<td>68</td>
<td>1138</td>
</tr>
<tr>
<td>Median</td>
<td>233</td>
<td>254</td>
<td>222</td>
<td>153</td>
<td>189</td>
<td>180</td>
<td>129</td>
<td>193</td>
<td>112</td>
<td>190</td>
<td>168</td>
<td>202</td>
<td>1484</td>
</tr>
<tr>
<td>90th percentile</td>
<td>34</td>
<td>24</td>
<td>23</td>
<td>16</td>
<td>19</td>
<td>13</td>
<td>19</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>25</td>
<td>21</td>
<td>727</td>
</tr>
<tr>
<td>Mean no. of raindays</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>131</td>
</tr>
<tr>
<td>Highest</td>
<td>281</td>
<td>339</td>
<td>519</td>
<td>299</td>
<td>287</td>
<td>320</td>
<td>241</td>
<td>412</td>
<td>207</td>
<td>267</td>
<td>209</td>
<td>303</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 2.31 Average Mean Monthly Rainfall and Temperatures (Maddox Lane, Lidsdale)

2.9.3 Temperature and Humidity

Average monthly temperatures at Lithgow (Birdwood Street) from 1889 to 2006 are presented in **Table 2.12** and **Figure 2.31**. The warmest month of the year is January with a mean maximum temperature of 25.2°C and a mean minimum of 11.9°C. The coolest month of the year is July with a mean maximum temperature of 10.4°C and a mean minimum temperature of 0.7°C. Rainfall and temperature trends are seasonally distributed with the highest falls and the maximum temperatures occurring in the summer months, and the lowest rainfall and minimum temperatures experienced during the winter months. **Table 2.12** presents the long term monthly average humidity in the region surrounding the Project Application Area. The mean 9 a.m. relative humidity varies between 60% and 82%, while the 3 p.m. relative humidity varies between 50% and 67% throughout the year.
Table 2.12 Average Monthly Temperature (°C) at Lithgow (Birdwood Street), Station 63224

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Mean maximum temperature (°C)</td>
<td>25.2</td>
<td>24.7</td>
<td>22.4</td>
<td>18.4</td>
<td>14.3</td>
<td>11.1</td>
<td>10.4</td>
<td>12.0</td>
<td>15.4</td>
<td>18.7</td>
<td>21.5</td>
<td>24.5</td>
<td>18.2</td>
</tr>
<tr>
<td>Mean minimum temperature (°C)</td>
<td>11.9</td>
<td>12.1</td>
<td>10.1</td>
<td>6.7</td>
<td>3.9</td>
<td>1.8</td>
<td>0.7</td>
<td>1.3</td>
<td>3.4</td>
<td>6.0</td>
<td>8.1</td>
<td>10.4</td>
<td>6.4</td>
</tr>
<tr>
<td>Relative Humidity Mean 9am relative humidity (%)</td>
<td>64</td>
<td>70</td>
<td>73</td>
<td>76</td>
<td>81</td>
<td>82</td>
<td>79</td>
<td>73</td>
<td>64</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>70</td>
</tr>
<tr>
<td>Mean 3pm relative humidity (%)</td>
<td>54</td>
<td>58</td>
<td>60</td>
<td>59</td>
<td>66</td>
<td>67</td>
<td>66</td>
<td>56</td>
<td>54</td>
<td>51</td>
<td>53</td>
<td>50</td>
<td>58</td>
</tr>
</tbody>
</table>

2.9.4 Wind

Springvale Mine experiences predominantly light to moderate winds, with the prevailing wind direction from the southwest and southeast (SLR, 2013b).

A Calmet analysis (SLR, 2103b) calculated the wind rose diagrams for the site (Figure 2.32) and the following summary data:

- in spring, winds are light to moderate (1.5 m/s to 8 m/s). Prevailing wind direction is from the south-west and the north-east;
- in summer, winds are light to high (1.5 m/s to 10.5 m/s). Prevailing wind direction is from the south-east;
- in autumn, winds are light to moderate. Prevailing wind direction is from the south-east; and
- in winter, winds are light to high. Prevailing wind direction is predominantly from the south-west.

Wind speed frequencies for the site are provided in Table 2.13.
2.9.5 Evapotranspiration

Daily pan evaporation has been recorded at Bureau of Meteorology Station 63005, Bathurst Agricultural Station, from 1966 to December 2011 (Table 2.14). This is the closest station to the Project sites that records evaporation data. The average daily pan evaporation is 3.7 mm/day.

<table>
<thead>
<tr>
<th>Period</th>
<th>Season</th>
<th>Calm</th>
<th>Wind Direction</th>
<th>0.5 to 2 m/s</th>
<th>2 to 3 m/s</th>
<th>0.5 to 3 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytime</td>
<td>Summer</td>
<td>0.4%</td>
<td>ENE±45</td>
<td>2.8%</td>
<td>7.3%</td>
<td>10.1%</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>1.2%</td>
<td>E±45</td>
<td>4.0%</td>
<td>8.1%</td>
<td>12.1%</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>0.5%</td>
<td>W±45</td>
<td>2.8%</td>
<td>6.2%</td>
<td>9.0%</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>0.5%</td>
<td>NE±45</td>
<td>2.8%</td>
<td>5.1%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Evening</td>
<td>Summer</td>
<td>0.7%</td>
<td>E±45</td>
<td>3.4%</td>
<td>13.9%</td>
<td>17.3%</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>1.6%</td>
<td>E±45</td>
<td>7.2%</td>
<td>13.9%</td>
<td>21.0%</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>1.2%</td>
<td>WSW±45</td>
<td>4.1%</td>
<td>10.5%</td>
<td>14.6%</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>1.0%</td>
<td>E±45</td>
<td>3.1%</td>
<td>11.9%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Night</td>
<td>Summer</td>
<td>2.8%</td>
<td>E±45</td>
<td>8.4%</td>
<td>15.3%</td>
<td>23.7%</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>4.0%</td>
<td>SW±45</td>
<td>11.7%</td>
<td>9.7%</td>
<td>21.4%</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>1.8%</td>
<td>SW±45</td>
<td>8.8%</td>
<td>9.1%</td>
<td>17.9%</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>2.2%</td>
<td>WSW±45</td>
<td>6.4%</td>
<td>9.0%</td>
<td>15.5%</td>
</tr>
</tbody>
</table>

2.9.6 Atmospheric Stability Classes and Temperature Inversion

Atmospheric stability refers to the tendency of the atmosphere to resist or enhance vertical motion. The Pasquill-Turner assignment scheme identifies six Stability Classes, A to F, to categorise the degree of atmospheric stability (Table 2.15). These classes indicate the characteristics of the prevailing meteorological conditions and are used as input into various air dispersion models.

<table>
<thead>
<tr>
<th>Atmospheric Stability Class</th>
<th>Category Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very unstable, low wind, clear skies, hot daytime conditions</td>
</tr>
<tr>
<td>B</td>
<td>Unstable, clear skies, daytime conditions</td>
</tr>
<tr>
<td>C</td>
<td>Moderately unstable, moderate wind, slightly overcast daytime conditions</td>
</tr>
<tr>
<td>D</td>
<td>Neutral, high winds or cloudy days and nights</td>
</tr>
<tr>
<td>E</td>
<td>Stable, moderate wind, slightly overcast night-time conditions</td>
</tr>
<tr>
<td>F</td>
<td>Very stable, low winds, clear skies, cold night-time conditions</td>
</tr>
</tbody>
</table>

According to SLR (2013b), the Project Application Area has a high frequency Stability Class D which is indicative of neutral conditions, conducive to moderate pollutant dispersion.

Table 2.13 Seasonal Frequency of Occurrence of Wind Speed Intervals

Table 2.14 Average Daily Pan Evaporation (mm) from Bathurst Agricultural Station, Station 63005

Table 2.15 Atmospheric Stability Classes
Figure 2.32: Wind Roses for the Project Site
CHAPTER 3.0

Existing Mine Operations
3.0 EXISTING MINE OPERATIONS

This chapter provides a description of the existing operations and infrastructure at Springvale Mine and relevant approvals currently held by the mine relating to the operations.

3.1 Existing Approvals

3.1.1 Development Consents and EPBC Act Approval

Development Consent DA 11/92 for Springvale Mine was granted in 1992, under Section 101 of Part 4 the EP&A Act and permitted the construction and operation of an underground coal mine to extract high quality thermal coal from the Lithgow Seam. DA 11/92 provides for secure and cost effective transport of coal via an overland conveyor system to local power stations or to the export market via Lidsdale Siding Rail Loading Facility. The 1992 consent allowed for underground longwall mining with an annual extraction limit of 3.4 million tonnes per annum of Run of Mine (ROM) coal and associated infrastructure both surface and underground (Table 3.1). Figure 1.2 displays the approved areas of Springvale Mine. Figure 3.1 shows the existing workings and the existing infrastructure.

To facilitate continued mining operations at Springvale Mine, the 1992 development consent has been modified three times under the EP&A Act to permit for the development of supporting infrastructure.

The modifications (Table 3.1) are as follows:

- DA 11/92 Mod 1 in 1993 allowed for a number of amendments including augmentation of the pit top layout, a new mine entry, relocation of a conveyor route and use of the coal preparation plant (CPP) at the former Western Main Colliery (now the Springvale Coal Services Site);
- DA 11/92 Mod 2 in 1994 related to a change in the schedule of lands and tenements associated with the development consent;
- DA 11/92 Mod 3 related to the construction and operation of the Bore 8 dewatering facility and associated infrastructure; and
- DA 11/92 Mod 4 to allow for a coal production increase up to 4.5 Mtpa, an increase in workforce to 310 full time employees, an extension of time to 30 September 2015 and connection of the pit top to the Lithgow City Council sewer system.

The 1992 consent, DA 11/92 (as modified) remains current and authorises the extraction of coal within the existing mining lease area. While the mine layout and longwall orientation of Springvale Mine has remained the same since commencement, as mining has progressed the geometry and length of longwall panels have been refined for optimal resource recovery and minimal potential environmental impacts.

Further development applications have been approved for Springvale Mine infrastructure by Lithgow City Council as outlined in Table 3.1. Approval for LW415 to LW417 (EPBC 2011/5949) has been granted in accordance with the EPBC Act in March 2012 (Table 3.1).
Table 3.1: Existing Development Consent and EPBC Act Approval

<table>
<thead>
<tr>
<th>Ref No.</th>
<th>Description</th>
<th>Issued By</th>
<th>Issue/Consent Date</th>
<th>Expiry/ Review Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- A pit top offices, bathhouse, water management infrastructure, portal, Crushing and Screening Plant, Rill Tower, sewage treatment plant, workshop and wash–down facilities, underground ventilation facilities, electrical distribution network, ROM coal stockpile area and a CPP;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Conveyor system from underground to the ROM stockpile area via the Rill Tower; and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- an overland conveyor system connecting the pit top to the Wallerawang and Mount Piper Power Stations, Springvale Coal Services Site and Lidsdale Siding.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modifications to the pit top layout;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modifications to storm water controls;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- New mine entry point;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Relocation of mine ventilation shafts;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Extension of existing road to access shafts;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Use of the existing CPP at the Western Main Colliery (now Springvale Coal Services site);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Relocation of existing conveyor route to the CPP at Western Main Colliery (now Springvale Coal Services site).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA 326/02</td>
<td>Construction and operation of a coal conveyor from Castlereagh Highway to Wallerawang Power Station.</td>
<td>Lithgow City Council</td>
<td>20 Sept 2002</td>
<td>N/A</td>
</tr>
<tr>
<td>DA 461/02</td>
<td>Construction and operation of Ventilation Shaft 3 facility on the Newnes Plateau.</td>
<td>Lithgow City Council</td>
<td>23 Jan 2003</td>
<td>N/A</td>
</tr>
<tr>
<td>DA 461/02 Mod 1</td>
<td>Upgrade of Ventilation Shaft 3 facility.</td>
<td>Lithgow City Council</td>
<td>30 May 2012</td>
<td>N/A</td>
</tr>
<tr>
<td>EPBC 2011/5949</td>
<td>Mining of longwalls 415, 416 and 417 at Springvale Mine.</td>
<td>SEWPAC</td>
<td>14 Mar 2012</td>
<td>19 Mar 2032</td>
</tr>
<tr>
<td>DA 11/92 Mod 3</td>
<td>Construction and operation of Bore 8 dewatering facility and associated infrastructure.</td>
<td>Minister for Planning</td>
<td>11 Mar 2013</td>
<td>28 Sept 2014</td>
</tr>
</tbody>
</table>
3.1.2 Other Regulatory Requirements

Springvale Mine has a number of other regulatory requirements for operation. These consist of approvals, licences, permits and certificates as listed in Table 3.2. In early 2006, Springvale Coal obtained Subsidence Management Plan (SMP) approval to extract the LW411 to LW418. Mining has progressed in accordance with the staged SMP approvals and variations (Section 3.1.4).

Table 3.2 Other Regulatory Requirements for Operation

<table>
<thead>
<tr>
<th>Type</th>
<th>Approval Number</th>
<th>Regulatory Authority</th>
<th>Issue Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining Operations Plan</td>
<td>09/8465</td>
<td>DTIRIS</td>
<td>24 May 2010</td>
<td>The Mining Operations Plan is a working reference for the activities of the mine in accordance with the guidelines of the DTIRIS for the period 2009 - 2016 inclusive. It is consistent with approved SMP commitments, EPL 3607 and the DA 11/92 consent. The objectives of the MOP are to meet statutory guidelines for reporting.</td>
</tr>
<tr>
<td>SMP</td>
<td>04/1673 08/8497 11/3964</td>
<td>DTIRIS</td>
<td>6 Mar 2006 to 28 September 2014</td>
<td>SMPs are prepared to consider the potential subsidence impacts of underground mining and identify measures to manage such impacts.</td>
</tr>
</tbody>
</table>

- Production increase from 3.4 Mtpa to up to 4.5 Mtpa;
- increased staffing to 310 full time employees;
- connection of the pit top to the Lithgow City Council sewer system; and
- extension of time on the consent from 28 September 2014 to 30 September 2015.
<table>
<thead>
<tr>
<th>Type</th>
<th>Approval Number</th>
<th>Regulatory Authority</th>
<th>Issue Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment Protection Licence (Protection of the Environment Operations Act 1997)</td>
<td>EPL 3607</td>
<td>NSW EPA</td>
<td>17 May 2000</td>
<td>Springvale Coal Pty. Ltd is the licensee of Springvale Mine EPL 3607 which authorises the mining of coal up to 3.5 Mtpa, and coal services works up to a scale of 5 Mtpa at the Springvale Coal Services site. Monitoring is undertaken in accordance with the licence and results reported on an annual basis to the OEH via the EPA Annual Return.</td>
</tr>
<tr>
<td>Radiation Gauge</td>
<td>29346</td>
<td>EPA</td>
<td>12 Feb 2004</td>
<td>Licence to sell/possess. Springvale Mine has these extractive water licences.</td>
</tr>
<tr>
<td>Groundwater Licences (Water Act 1912)</td>
<td>10BL603519, 10BL602017, 10BL601863</td>
<td>NOW, NOW, NOW</td>
<td>24 Feb 2010, 04 Sept 2007, 04 Sept 2007</td>
<td>Springvale Mine has these extractive water licences.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Dewatering Bore 8 licensed at 5958 ML/year extraction limit (10BL603519). pit top collection system licensed at 585 ML/year (10BL602017).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Dewatering borehole at Ventilation Shaft 3 compound licensed at 3300 ML/year (10BL601863).</td>
</tr>
<tr>
<td>Section 138 Approval (Coal Mines Regulation Act 1982)</td>
<td>C05/6330</td>
<td>DTIRIS</td>
<td>04 Jan 2006</td>
<td>Approval to extract LW411 and LW412 within the Lithgow Seam.</td>
</tr>
<tr>
<td>Type</td>
<td>Approval Number</td>
<td>Regulatory Authority</td>
<td>Issue Date</td>
<td>Details</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>----------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Section 95 Certificate (Threatened Species Conservation Act 1995)</td>
<td>1117191</td>
<td>OEH</td>
<td>02 Aug 2010</td>
<td>Undertake geotechnical and geophysical investigations within Newnes Plateau Shrub Swamp.</td>
</tr>
<tr>
<td>Dangerous Goods Licence</td>
<td>35/027897</td>
<td>WorkCover NSW</td>
<td>-</td>
<td>Dangerous goods on premises.</td>
</tr>
</tbody>
</table>

3.1.3 Mining Tenements

Springvale Coal operates Springvale Mine and the Springvale Coal Services Site on behalf of the owners Centennial Springvale Pty Limited and Springvale SK Kores Pty Limited. Springvale Mine operates under a variety of mining authorities (Table 3.3) consisting of mining leases, coal leases, authorisations and exploration licences, each granted by the DTIRIS. The parts of these authorities which apply to the Project Application Area and the Springvale Coal Services Site are shown in Figure 2.1.
Table 3.3 Mining Tenements

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Expiry Date</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Springvale Mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL 377</td>
<td>Coal Lease 377</td>
<td>9 Apr 2025</td>
<td>1,105</td>
</tr>
<tr>
<td>A 460</td>
<td>Authorisation 460</td>
<td>6 Jun 2015</td>
<td>1,105</td>
</tr>
<tr>
<td>ML 1303</td>
<td>Mining Lease 1303</td>
<td>14 Dec 2013</td>
<td>713</td>
</tr>
<tr>
<td>ML 1323</td>
<td>Mining Lease 1323</td>
<td>3 Aug 2014</td>
<td>30.24</td>
</tr>
<tr>
<td>ML 1326</td>
<td>Mining Lease 1326</td>
<td>18 Aug 2024</td>
<td>2,157</td>
</tr>
<tr>
<td>EL 6974</td>
<td>Exploration Licence 6974</td>
<td>13 Dec 2012</td>
<td>4,385</td>
</tr>
<tr>
<td>ML 1537</td>
<td>Mining Lease 1537</td>
<td>25 Jun 2024</td>
<td>4.13</td>
</tr>
<tr>
<td>ML 1588</td>
<td>Mining Lease 1588</td>
<td>19 Oct 2027</td>
<td>975.5</td>
</tr>
<tr>
<td>ML 1670</td>
<td>Mining Lease 1670</td>
<td>17 Feb 2033</td>
<td>0.3</td>
</tr>
<tr>
<td>MPL 314</td>
<td>Mining Purposes Lease 314</td>
<td>2 Aug 2014</td>
<td>96.4 in 2 parts</td>
</tr>
<tr>
<td>MLA445</td>
<td>Mining Lease Application for Bore 8 dewatering facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springvale Coal Services Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL 733</td>
<td>Consolidated Coal Lease 733</td>
<td>3 July 2027</td>
<td>723.5</td>
</tr>
<tr>
<td>ML 204</td>
<td>Mining Lease 204</td>
<td>27 May 2012</td>
<td>10.12</td>
</tr>
<tr>
<td>ML 564</td>
<td>Mining Lease 564</td>
<td>2 May 2023</td>
<td>19.75</td>
</tr>
<tr>
<td>PLL 133</td>
<td>Private Lands Lease 133</td>
<td>10 Aug 2024</td>
<td>16.51</td>
</tr>
<tr>
<td>ML 1319</td>
<td>Mining Lease 1319</td>
<td>5 July 2014</td>
<td>5.71</td>
</tr>
<tr>
<td>ML 1352</td>
<td>Mining Lease 1352</td>
<td>23 Jun 2015</td>
<td>8.2 in 2 parts</td>
</tr>
<tr>
<td>ML 1448</td>
<td>Mining Lease 1448</td>
<td>31 May 2020</td>
<td>95.16</td>
</tr>
<tr>
<td>CL 361</td>
<td>Coal Lease 361</td>
<td>16 July 2032</td>
<td>14.26</td>
</tr>
<tr>
<td>CL 394</td>
<td>Coal Lease 394</td>
<td>27 May 2013</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Longwall mining is currently undertaken within ML 1326. The underground mine is accessed through ML 1303 at the pit top.

In December 2010 Conditional Approval was granted for the removal of 29.97 ha of ML 1326 from the Springvale Mine holding and the simultaneous addition of this area to the Angus Place Colliery holding. ML 1326 expires on 13 August 2024 and while the 1992 development consent grants development consent for the area of the northern longwalls, to date, the existing underground workings have extracted fully up to LW415 only.

Springvale Coal Services site and the overland conveyor route are comprised within land covered by CCL733, and MPL 314 and ML 1352, respectively.
3.1.4 Evolution of Mine Design

DA 11/92 provided a mine plan that reduced impacts upon the known environmental constraints at the time, whilst recovering minerals to the extent that is economically possible as required by the mining lease for Springvale Mine. Environmental constraints identified within the 1992 EIS consist of cliffs and pagoda formations at the boundary of the mine plan site and the upper reaches of Carne Creek to the north east of the mine plan.

Key design components of the DA 11/92 mine plan layout are:

- extraction of coal by the longwall mining method;
- extraction of longwall blocks with a north-south orientation;
- longwall geometries allowing the coal resource to be extracted cost effectively and with minimal environmental impacts;
- development of mains headings by continuous miner units in an east-west orientation; and
- the principal coal output was to be extracted by means of a 245 m wide by 1,750 m long, retreating longwall face (LW1, LW401 – LW410) (Figure 3.1). From LW411, longwall blocks were to be extended to in excess of 3,750 m for all remaining approved longwalls (outside of environmental constraint areas).

While the general mine layout at Springvale Mine has not changed since DA 11/92 was first granted, variations to the longwall panel design (lengths, void widths and chain pillar width) have occurred to optimise underground mining, however, these modifications have resulted in positive environmental outcomes, as described below.

It should be noted the void width is also referred to as the panel width, defined as the transverse distance across a longwall panel, usually equal to the longwall face width plus the widths of the roadways on each side.

The width-to-depth ratio (W/H) has been used in the mine design at Springvale Mine as an important predictor of subsidence behaviour. The ratio is expressed as the longwall void width (W) divided by the depth of cover (H) of strata above the seam (Section 8.3.5). W/H<0.9 (sub-critical longwall panels) cause lower magnitudes of subsidence, 0.9<W/H<1.4 (critical longwall panels) represents cases where yielding of the overburden starts to occur and maximum subsidence is likely to develop if the panel widths are increased further. Lastly, with W/H>1.4 (supercritical longwall panels) yielding of the overburden and maximum subsidence are likely to occur. For example, the first ten longwall panels LW1, LW401 to LW409, approved under Section 138 of Coal Mines Regulation Act 1982 ranged in void width from 254 m to 266 m (with associated longwall face width of 245 m to 255 m). Corresponding depths of cover of strata above the coal seam (overburden) in the range of 300 m to 400 m for these longwalls yielded a width to depth ratio (W/H) of 0.70 to 0.85.

Longwall panel LW410 void width was increased to 315 m (with associated face width of 305 m) to allow for the coal to be mined more cost effectively and maximise resource recovery. The increase in face width was approved under section 138 of Coal Mines Regulation Act 1982. With depths of cover between 320 m and 420 m, the width-to-depth ratios for LW410 to LW415 were in the range of 0.75 to 1.0, and represented in some cases the critical longwall panels noted above.

An SMP application was submitted for LW411 to LW418 on the basis of 315 m width and was approved on 7 March 2006. Further changes in longwall dimensions were granted by the SMP approvals in a number of variations (refer below). One of the outcomes of the SMP Variation in 2010 (shortening of LW414) was the avoidance of Sunnyside Swamp. Extraction of LW414 is now complete. LW415 extraction is now also complete.

Following a review of subsidence monitoring results of extracted longwalls in 2011, it was determined that subsidence impacts as a result of underground longwall mining had only been experienced where the ratio of...
longwall mining void width to depth of cover over mine workings was identified to be in the critical design range. Following this investigation, the mine design was modified for all future proposed mining areas in the vicinity of Newnes Plateau Shrub Swamps to ensure that the ratio of longwall mining void width to depth of cover over mine workings was in the sub-critical design range.

No subsidence effects to swamp hydrology or flora communities have been identified in areas where sub-critical mine design have been used in the past. The mine design modifications involved narrowing longwall widths and/or increasing chain pillar widths. As a result of these findings and in consultation with State and Commonwealth regulators, Springvale Coal altered the longwall geometry of the existing mine plan to reduce the void width of LW416 and LW417 (and subsequent proposed longwall panels) from 315 m to 261 m and increase the chain pillar width from 45 m to 58 m.

The change in longwall dimensions of LW416 and LW417 results in a decrease in width-to-depth ratios to 0.62 to 0.73, which will reduce measurable subsidence, similar to LW1, LW401 to LW409.

Changes in void widths are summarised in Table 3.4. These variations in longwall panel design are the result of a detailed understanding of the impacts of previous and existing operations upon built and natural features, and extensive monitoring and detailed investigation of the impacts of previous longwall mining activities to natural features (including Newnes Plateau Shrub Swamps and Newnes Plateau Hanging Swamps).

Table 3.4 Variations in Void (or Panel) Width and Void Width to Cover Depth W/H Ratio

<table>
<thead>
<tr>
<th>LW Panel</th>
<th>Face Width (m)</th>
<th>Void Width (m)</th>
<th>Depth of Cover (m)</th>
<th>Width to Depth Ratio (W/H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW1, LW401 – LW409</td>
<td>245 – 255</td>
<td>254 – 266</td>
<td>300 – 400</td>
<td>0.64 – 0.85</td>
</tr>
<tr>
<td>LW410 - LW415</td>
<td>305</td>
<td>315</td>
<td>320 – 420</td>
<td>0.75 – 0.98</td>
</tr>
<tr>
<td>LW416 - LW417</td>
<td>250</td>
<td>261</td>
<td>360 – 420</td>
<td>0.62 – 0.73</td>
</tr>
</tbody>
</table>

Table 3.5 lists the specific approvals granted in regard of the mine design refinements undertaken to date, and discussed above. As noted previously these modifications have resulted in beneficial environmental outcomes such as avoidance of Sunnyside Swamp overlying LW414. In the case of shortening of the LW416 to LW418, a number of sensitive surface features have been avoided, including hanging swamps and pagodas to the north of these longwalls.
Table 3.5 SMP Approvals and Mine Design Refinement

<table>
<thead>
<tr>
<th>SMP</th>
<th>Date</th>
<th>Description</th>
<th>Purpose of Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial SMP 04/1673</td>
<td>2006</td>
<td>SMP for LW411 – 418</td>
<td>Mining lease requirement for approved SMP prior to mining and in accordance with the approved dimensions of DA 11/92. Void widths of 315 m and longwalls lengths in excess of 3750 m.</td>
</tr>
<tr>
<td>Section 138 Approval</td>
<td>January 2006</td>
<td></td>
<td>Approval to extract LW411 and LW412 within the Lithgow Seam.</td>
</tr>
<tr>
<td>(Coal Mines Regulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act 1982)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMP Variation</td>
<td>Nov 2008</td>
<td>Reduction in length of LW414 – LW418</td>
<td>LW414 to LW418 shortened by 471 m to the south to avoid a geological syncline running through the northern extent of these longwall blocks. Also as a result of this mine design modification, sensitive surface features have been avoided, including hanging swamps and pagodas to the north of LW416 to LW418.</td>
</tr>
<tr>
<td>SMP Variation 08/8497</td>
<td>February 2009</td>
<td>LW413 step around and reduction of LW414</td>
<td>Step around of LW413 was approved to avoid existing geological constraints. LW414 shortened by approximately 700 m to the south due to anticipated geological conditions which could potentially lead to dangerous roof control issues and difficult mining conditions within the northern portion of LW414.</td>
</tr>
<tr>
<td>SMP Variation 08/8497</td>
<td>August 2009</td>
<td>Changes to LW413 block dimensions</td>
<td>Variation to the take-off face position in LW413.</td>
</tr>
<tr>
<td>Clause 88 Approval</td>
<td>October 2009</td>
<td></td>
<td>Variation approval to extract LW414 within the Lithgow Seam.</td>
</tr>
<tr>
<td>SMP Variation 08/8497</td>
<td>2010</td>
<td>Reduction in length of LW414</td>
<td>Based on monitoring results and feedback from stakeholder consultation, LW414 was shortened by in excess of 1,186 m. Dimensions were modified to avoid significant business interruption and production discontinuity. Another outcome of the shortening of LW414 was the avoidance of Sunnyside Swamp.</td>
</tr>
<tr>
<td>SMP Variation 08/8497</td>
<td>2011</td>
<td>Change in Mine Plan dimensions of LW416 and LW 417</td>
<td>Change of mine plan to reduce void width of LW416 and LW417 from 315 m to 261 m and increase of chain pillar width from 45 m to 58 m. The new dimensions were to improve underground stability and minimise the risk of environmental impact to surface features.</td>
</tr>
<tr>
<td>SMP Variation 08/8497</td>
<td>2012</td>
<td>SMP Variation LW415</td>
<td>Change in mine plan to reduce the length of LW415 due to geological conditions.</td>
</tr>
<tr>
<td>SMP Variation 11/3964</td>
<td>2012</td>
<td>SMP Variation LW416</td>
<td>LW416 was shortened based upon identification of lithology change, which posed a risk to mine safety, coal quality and production rates. Also as a result of this mine design modification, sensitive surface features have been avoided, including hanging swamps to the north of Longwalls 416.</td>
</tr>
<tr>
<td>SMP Variation 11/3964</td>
<td>2013</td>
<td>SMP Variation LW411-418</td>
<td>Change in mine plan dimensions for LW411–LW418. Increase of pillar length to 130 m.</td>
</tr>
<tr>
<td>SMP Variation 11/3964</td>
<td>2013</td>
<td>Extension of time to SMP Approval</td>
<td>Variation to extend relevant SMP approvals until 28 September 2014.</td>
</tr>
</tbody>
</table>
3.2 Exploration Programme

Springvale Mine has an ongoing exploration programme used to obtain specific geological information in terms of geotechnical conditions, coal seam quality and thickness, through core sampling. Information obtained is used for the ongoing refinement of the site’s existing geological model which then allows detailed mine planning. The exploration programme also allows the installation of piezometers in the aquifers of interest for ongoing groundwater monitoring.

All exploration activities are carried out in accordance with the requirements of the Mining Act 1992. Approval for the proposed exploration activities is currently sought under Part 5 of EP&A Act from DTIRIS following the preparation of Review of Environmental Factors to assess the potential environmental impacts of the proposed activity.

Springvale Coal has developed area-based assessment procedures for the management of exploration activities to ensure that they are conducted in an environmentally responsible manner and with due consideration to the community. This includes a risk-based process for the selection, assessment and environmental management of proposed drillhole sites and access tracks based on environmental, geological, logistical and other operational constraints. The locations of the drillhole sites and access tracks are reviewed in light of the environmental assessments undertaken and relocated where possible to avoid any environmental impacts.

Following vegetation clearing at the drillhole site appropriate erosion and sediment controls are installed and maintained around disturbed areas in accordance with the Blue Book (Landcom, 2004). Felled trees are stockpiled for use in rehabilitation.

A process pond is constructed to allow storage and recycling of drilling fluid and clean water in two separate compartments. The compartment used to store drilling fluid, comprising a mixture of water and mud or a biodegradable polymer, is lined with plastic sheets. Water required for drilling is sourced from one of the dewatering bore facilities and is transported to the drill sites using trucks.

The drilling fluid is continuously pumped to the drill head to facilitate the removal of cuttings, stabilise the borehole, cool the cutting head and lubricate the passage of the product pipe. The drilling fluid is generally sent into a reclaimer which removes the drill cuttings and maintains correct viscosity of the fluid. All drilling fluid recovered that cannot be recycled will be vacuum pumped and removed from site following OEH’s Waste Classification Guidelines (DECCW, 2009) and the use of a licensed waste transporter and a receiving facility.

Spoils or cuttings generated during drilling are stockpiled on site for use in rehabilitation including for back-filling drilled holes in cases where no piezometer installation occurs. Sealing of the drill holes is undertaken in accordance with the DTIRIS requirements.

Rehabilitation of the drill site commences soon after completion of drilling activity and follows on from decommissioning of equipment and removal of waste materials. Following re-profiling within the disturbed areas, the stockpiled topsoil is re-spread onto areas requiring rehabilitation, to a minimum depth of 0.1 – 0.3 m, depending on availability. Stockpiled cleared vegetation is spread over the re-profiled areas.

3.3 Land Preparation

Springvale Mine is an established underground mine with adequate support infrastructure. All areas required to construct the pit top have been cleared and managed in accordance with the current development consent (DA 11/92) and as outlined in the Springvale MOP (2009-2016).

Land preparation works as required for additional surface infrastructure on Newnes Plateau involve land for dewatering boreholes and associated infrastructure corridors comprising trenched pipelines and power cables, ventilation facilities and geological exploration boreholes.

Land preparation for the required infrastructure establishment involves the clearing of vegetation, the removal and stockpiling of topsoil, the establishment of temporary and permanent water management
systems within the site compounds, and temporary surface stabilisation of construction areas. Appropriate sediment and erosion controls in accordance with the Blue Book (Landcom, 2004) are installed and maintained around disturbed areas. Cross banks and mitre drains are constructed at appropriate intervals to convey runoff away from the access road alignment. Progressive rehabilitation of land not required for operations are undertaken on completion of construction activities, both at the site compounds and along access tracks. Long term compounds are gravelled, fenced and locked.

3.4 Hours of Operation and Workforce

Springvale Mine operates 24 hours a day, seven days a week, 52 weeks per year. The mine is approved to employ a workforce of up to 310 full-time employees.

3.5 Site Access

Springvale pit top is accessed via Mine Access Road which joins the Castlereagh Highway near Lidsdale (Figure 3.5). From the Castlereagh Highway, access is readily available to the sub-regional and regional road network.

There are two principal transportation routes between Springvale pit top and the surface infrastructure sites on Newnes Plateau. These cater for heavy and light vehicle access. The roads are predominantly unsealed and require four wheel drive capability.

Access for light vehicles is via State Mine Gully Road northeast of Lithgow and then along Glowworm Tunnel Road and Mayingugu Marragu Trail. Access for heavy vehicles is restricted to a route via Chifley Road and Old Bells Line of Road at Clarence, and then along a route including Glowworm Tunnel Road or Mayinygu Marragu Trail. Light vehicles may use the heavy vehicle access route.

Both these access routes are currently used by Springvale vehicles undertaking infrastructure maintenance within Newnes State Forest and are used by a variety of other vehicles associated with logging, forestry management and recreation. Springvale has a maintenance agreement with the Forestry Corporation of NSW for the upkeep of the roads that access the site infrastructure on the Newnes Plateau.

Access to the overland conveyor route is via an unsealed corridor within mining leases MPL314 and ML1352, which overlies both Centennial Coal and privately owned land.
3.6 Mining

3.6.1 Mining Method

Springvale Mine is approved to extract the Lithgow coal seam using the longwall method of mining. Longwall mining is a form of underground coal extraction where continuous miners are used to develop pairs of parallel roadways along with interconnecting cut-throughs to allow access to the coal resource. The process of development mining requires the installation of strata support such as roof bolts and mesh to maintain a safe working environment. The underground roadways are designed to be long term stable.

Once development is completed, the panels of coal are mined by a shearer that operates under a series of hydraulic roof supports. As the coal face is cut away, the shearer and the adjacent sequence of roof supports advance for the next cut, and the unsupported roof strata behind the coal face collapse into the void or goaf.

Springvale Mine utilises the retreat mining configuration whereby the longwall face equipment is established at the end of the panel that is remote from the main headings and coal is extracted within the panel as the longwall equipment moves towards the main headings. The coal between the development headings and the main headings is left in place as pillars to protect the roadways as mining proceeds. Springvale Mine has five main headings connecting the mine entries and the existing workings and the roadways. These main headings traverse the underground mine in the east-west direction, while the longwalls are oriented in the north-south direction.

The blocks of coal between adjacent roadways and cut throughs are known as chain pillars. The chain pillars are not mined and can be designed to assist with subsidence management. The pairs of roadways are developed around the perimeter of rectangular blocks of coal (known as panels). Longwall panel dimensions (LW1, LW401 – LW415) at Springvale have to date varied from 1500 m to 3500 m in length with void widths between 254 m to 315 m.

In 2006, the then I & I NSW – Mineral Resources approved a void width of 315 m for LW411 – LW418 under the SMP process. LW415 – LW417 were also approved under the EPBC Act (EPBC 2011/5949) with void width of 315 m for LW415 and a void width of 261 m for LW416 and LW417. It is noted that all proposed longwalls in the Project have the reduced void width of 261 m or less.

3.6.2 Mining Sequence

Mining at Springvale Mine commenced with extraction of LW1 and this has been followed by extraction of LW401 – LW415 progressing from the west towards the east within the DA 11/92 consent area (Figure 1.2 and Figure 3.1).

3.7 Coal Handling, Processing, Stockpiles and Transport

3.7.1 Coal Handling and Stockpiling at Springvale Pit Top

Coal extracted during development by continuous miners is deposited into shuttle cars for transport to the drift conveyor. Coal from the longwall shearer is also transported by an armoured face conveyor to the drift conveyor. Coal is transported from the underground workings by the drift conveyor onto the temporary ROM coal stockpile area at the pit top (85,000 tonne capacity) via the Rill Tower (Figure 3.2). ROM coal is reclaimed from the coal stockpile area by two activators and two vibratory feeders. The feeders use vibration to feed the coal material onto the reclaim conveyor. The coal is then transferred from the reclaim conveyor to a steel frame fully clad crusher and screening plant.

The 50 mm product within the crusher and screening plant is collected in the underpan of the first stage of the screen and deposited directly onto a conveyor and subsequently transferred to the overland conveyor system without further processing. The coal product between 50 mm and 175 mm is separated on the second stage of the screen and is delivered on to another conveyor to the discharge chute above twin coal sizers. The sizers reduce this coal to a nominal 50 mm product prior to transfer to the overland conveyor system for despatch off site.

All crushed coal is transported off site and no reject material is generated at the pit top.
The overland conveyor system delivers coal directly to Mount Piper Power Station or Wallerawang Power Station, or to the Springvale Coal Services Site for stockpiling and processing within its coal handling and processing plant, in accordance with DA 11/92 Mod 1. The overland conveyor system, approximately 10 kilometres in length, runs the entire route and the upper belt of the system is used to transfer the ROM coal to the power stations and the Springvale Coal Services site at a maximum speed of 900 tonnes per hour.

3.7.2 Coal Handling, Processing and Stockpiling at Springvale Coal Services Site

Coal Handling

Coal handling of up to 3.4 Mtpa and processing of up to 2 Mtpa occurs at the Springvale Coal Services Site, located at Blackmans Flat, currently under the existing Springvale Mine development consent DA 11/92.

Infrastructure located at the Springvale Coal Services Site is listed below and illustrated on Figure 3.3. As outlined in Table 3.1 these facilities were approved as part of DA 11/92.

- a coal handling and preparation plant and overland conveyor system;
- a ROM (600,000 tonne capacity) and processed (or washed) coal product stockpile (150,000 tonne capacity) areas;
- the approved ‘A Pit’ Reject Emplacement Area for the disposal of course and fine reject material from the CPP, and a co–Disposal Reject Emplacement Area for both the fine and coarse reject materials used as a back-up to the fine reject circuit in the CPP;
- conveyors and associated infrastructure;
- settlement ponds located adjacent to the ROM Stockpile;
- dirty and clean water containment structures (as further addressed in Section 3.11.2);
- electrical substations and transformer yards;
- main control room;
- CPP switch room;
- concrete water storage tanks (above ground) located adjacent to the CPP to provide water storage for use in the CPP and firefighting purposes; and
- administration infrastructure.
Figure 3.1: Existing Workings and Infrastructure

- Existing Workings
- Existing SDWTS Pipeline
- Existing Dewatering Facility
- Existing Ventilation Shaft
- Existing 11 KV Power Supply
- Existing 66 KV Electrical Transmission
- Overland Conveyor System

Legend:

- Village
- Town
- Rail
- Main Road
- Street / Track
- Watercourse

CENTENNIAL SPRINGVALE PTY LTD.

THIS DRAWING IS COPYRIGHT

NO PART OF IT IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, MICRO-COPING, PHOTOCOPYING OR OTHERWISE BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED WITHOUT PRIOR WRITTEN PERMISSION.

DATE: 17/11/2013
SEAM: LITHGOW
REFERENCE: 127623060-R-F041 SVC Rev 0
SCALE: 1:50,000

Coastal System: GDA 1994 MGA Zone 56
Figure 3.3: Surface Infrastructure at Springvale Coal Services Site

Lithgow City Council Landfill Site
Overland Conveyor System
Reject Emplacement Area - "A Pit Area"
Contour - 5m Interval
Washery, Workshops and Infrastructure
Waterbody

Source: RPS October 2013.
Coal Processing
Crushed coal from the Springvale pit top is transferred via the overland conveyor system to the ROM coal stockpile area at the Springvale Coal Services Site, and subsequently reclaimed for transfer using a conveyor into a small surge bin. The surge bin feeds coal into the CPP at the rate of 300 tonnes per hour. The CPP at the Springvale Coal Services Site currently is capable of processing up to approximately 2 Mtpa of ROM coal. Coal processing and ash removal occurs via a system of jigs, spirals, and a dense/medium cyclone. Coal product from the CPP is transferred to a processed (or washed) coal stockpile, and is subsequently transferred, using the return strand of the overland conveyor system, to Lidsdale Siding Rail Loading Facility for overseas markets.

Coal Rejects and Tailings Management
Coal reject material is produced by the preparation of product coal in the CHPP. It consists of high ash coal and non-coal material such as other sedimentary rock, which occurs within the extracted raw or ROM coal. The site produces over 300,000 tonnes per annum of reject material (comprising 150,000 tonnes per annum fine reject materials (tailings) and 150,000 tonnes per annum of coarse reject material).

There are two rejects emplacement areas used at the Springvale Coal Services site: the existing ‘A Pit’ Reject Emplacement Area for emplacement of course reject materials, and a co-Disposal Reject Emplacement Area for both the fine and coarse reject materials. The ‘A Pit’ Reject Emplacement Area (REA) is located within the final void of the Lamberts Gully Open Cut Mine and is used as the main disposal area for both course and fine reject materials from the CPP.

Coarse reject from the CPP is trucked from the reject materials bin to the A Pit REA, where it is used to construct cells to contain fine reject material. The fine reject material is pumped via slurry pipes from the CPP as tailings into these cells. Coarse reject material is also used as a capping material once the cells are full.

A second REA, located near the main entrance to the Springvale Coal Services Site and known as the Co-Disposal REA, was the original reject disposal area for the site and was approved separately under the then Section 126 of the Coal Mines Regulation Act 1982, and then later under Section 102 of the Coal Mines Health and Safety Act 2002. Operation of the Co-Disposal REA is used as a backup to the fine reject circuit in the CPP.

Coal Stockpiling
The Springvale Coal Services Site has provisions to stockpile up to a maximum of 600,000 tonnes of coal if Mount Piper Power Station is unable to receive coal for an extended period. The stockpile area can also be used to blend reject materials, and to store and feed raw coal produced from other operations.

3.7.3 Coal Transport
ROM coal from the Springvale pit top is transported to either Mount Piper Power Station or Wallerawang Power Station via the overland conveyor system or is transported as noted above to the Springvale Coal Services site, again using the overland conveyor system, for stockpiling and processing. Processed coal from the Springvale Coal Services site is transferred to the Lidsdale Siding Rail Loading Facility, using the return belt of the overland conveyor system, for the export market.

As noted above, all ROM coal is transported from the Springvale pit top via the overland conveyor system, however, with the exception of a nominal 50,000 tonne of coal, which Springvale Mine is permitted to transport via the Castlereagh Highway for local contracts. Schedule 2 Condition 7(b) of the DA 11/92 states:

“The Applicant may transport up to 50,000 tonnes per annum of coal to local domestic market customers by road haulage”.

This Condition is implemented in exceptional circumstances only, such as a time when the overland conveyor system is undergoing maintenance or repair and is unavailable for extended periods.
3.8 Plant and Equipment
Springvale Mine utilises three continuous miners for development and one longwall shearer for coal extraction. Shuttle cars and an armoured face conveyor are used for the transport of coal during development and coal extraction, respectively, to the drift conveyor. Additional mobile underground plant and equipment includes auxiliary fans, roof bolting rigs, equipment handlers, equipment transporters and loaders, underground personnel transporters and associated pumping and electrical reticulation equipment.

A network of pipelines, valves and pumps are used to manage water and compressed air underground.

At the Springvale Coal Services Site main plant items include the CHPP, the overland conveyor system and associated infrastructure, electrical control components, central control equipment and ancillary electrical equipment for the CHPP.

3.9 Mine Support Facilities and Underground Access
The surface facilities and mining related infrastructure which support the underground operations at Springvale Mine consist of:

- site access road and car park;
- mine access and associated infrastructure;
- coal handling, preparation and transport infrastructure;
- workshop, services and administration infrastructure;
- water management infrastructure;
- pollution control infrastructure;
- ancillary infrastructure; and
- non-mine owned infrastructure.

The existing layout of Springvale Mine together with supporting surface infrastructure across Newnes State Forest and the pit top surface facilities and infrastructure, and are shown in Figures 3.1, 3.2 and 3.4.

3.9.1 Underground Mine Access
Access to the underground mine is via two in-seam portals at the pit top. These entries (Figure 3.2) connect with the five main headings at the coal seam level. The main mine entry is adjacent to the bathhouse and is a dedicated transport route to underground. The other mine entry is used as a belt road with walking access as a second entry and or exit if required.

3.9.2 Workshop, Services and Administration Infrastructure
Management of the Springvale Mine operations is controlled from the pit top. Workshop, services and administration infrastructure consists of:

- administration building and portable offices;
- bathhouse with adequate facilities and services for the workforce;
- workshops, service buildings and material storage sheds;
- visitor and employee parking areas;
- personnel and materials drift winder for access to underground workings;
- mine conveyor drift providing for the coal conveyor to transfer coal from the underground workings to the ROM coal stockpile via the Rill Tower;

- a mine services borehole situated at Ventilation Shaft 3 Facility and used for delivering concrete and other materials (such as ballast) to the underground workings;

- Telecommunications systems; and

- power to the pit top is supplied by an electrical network connection at substation 0 located at Lidsdale. This together with substations 1 to 3 located at the pit top (Figure 3.2) and substations 4 and 5 (located on Newnes Plateau), supply all of Springvale Mine’s operational electrical requirements.

Substation 4 supplies power to substation 5 located at the Ventilation Shaft 3 Facility via overhead powerlines. Substation 5 supplies power to the main ventilation fan, air compressors, and is the main underground production and auxiliary supply at the Ventilation Shaft 3 Facility.

Electrical services to Bore 8 dewatering facility are provided via a trenched underground cable from Ventilation Shaft 3 Facility.

The infrastructure at Springvale Coal Services and all other conveyors are powered by the Blackmans Flat Substation.

3.10 Infrastructure

3.10.1 Water Management Infrastructure

The water management system at Springvale Mine is discussed in detail in Section 3.11. Principal components of water management infrastructure at the pit top and the Springvale Coal Services Site are:

- surface water management systems including separation of dirty and clean water flow paths (Figure 3.8);

- licensed discharge points at the pit top (LDP001 and LDP002), the Springvale Coal Services site (LDP006), on Newnes Plateau (LDP004 and LDP005) and at other locations (LDP007, LDP009 and LDP010) as permitted by EPL 3607 (Section 3.11.1);

- incoming water supply from Lithgow City Council;

- Improvements to the existing sewage treatment and effluent utilisation area; and

- mine dewatering infrastructure located on Newnes Plateau including the dewatering bore facilities and the Springvale Delta Water Transfer Scheme (SDWTS).

3.10.2 Pollution Control Infrastructure

The pit top pollution control infrastructure comprises a dirty and clean water management control system comprising:

- diversion bunds and drains;

- grit traps, oil/water separators and settling ponds;

- dust suppression of the stockpile area;

- wheelwash; and

- diesel, solcenic and oil storage facilities.
3.10.3 Other Infrastructure

Ventilation Facilities

The underground ventilation system at Springvale Mine comprises two surface portals located at the pit top and two separate intake shafts (Ventilation Shaft No. 1 and Ventilation Shaft No. 2) (Figure 3.1) which draw fresh air into the mine workings. Air is exhausted to the atmosphere from the underground mine workings via a single 3.5 m upcast diameter shaft (Ventilation Shaft No. 3) located in Newnes State Forest. The layout of this facility is presented in Figure 3.4.

Air flow is provided by a main ventilation fan system positioned on top of the Ventilation Shaft No. 3 exhaust shaft comprising a system of three fans. Only one fan is used at any time. Ventilation control devices installed throughout the underground mine ensure intake air is drawn to the production panels before it is exhausted as return air to Ventilation Shaft No. 3. The ventilation system provides for a minimum of 4 m³/s of airflow per metre of extracted height at the longwall face and 4.6 m³/s at each continuous miner unit in accordance with the Coal Mines Health and Safety Act 2002.

Mine Services Borehole Area

There is an existing mine services borehole area situated at the Ventilation Shaft No. 3 site, which is used for delivering concrete and other materials (such as ballast) to the underground workings. Concrete is typically used in underground coal mines to reinforce roadway floors, construct ventilation overcasts and other civil construction works. Underground vehicles transport the concrete to the required destination from the base of the mine services borehole.

Pit Top Collection System

The pit top is equipped with pipe works (referred to as the Fire Service Pipeline) and a pumping system that draws water from existing Springvale Mine underground workings and Renown Colliery workings to the Fire Dam (described below) for storage of the mine water and subsequent use of the stored water for operational requirements underground and at the pit top surface facilities. There is also provision to pump water from one of the pit top settling ponds (Secondary Pond) to the Renown Colliery workings for de-silting via percolation through the workings for subsequent use as process water. The pit top collection system is licensed as a dewatering bore by the NSW Office of Water (10BL602017).

Springvale Delta Water Transfer Scheme and Bore Dewatering Facilities

The Project Application Area is traversed by a network of predominantly trenched pipelines and power cables along existing tracks used for the management of mine inflows, and forms part of the SDWTS. The existing network, as relevant to Springvale Mine, is shown in Figure 3.1. The SDWTS also includes trenched pipes that extend into the Angus Place Colliery lease areas for the management of underground water at that mine.

The management of mine inflows underground is required to reduce operational risk during mining. At an active dewatering bore facility (Photograph 3.1), the mine inflows pumped out from underground works are discharged into the SDWTS for delivery to the Wallerawang Power Station for use in their cooling towers. The dewatering facility comprises typically two to four submersible pumps used to manage the mine inflows, shown in the foreground in Photograph 3.1, and associated surface infrastructure of electrical control systems and amenity facilities, shown in the background in Photograph 3.1. Each borehole, equipped with the submersible pump, is cased to below the Lithgow Coal Seam, and pumps clean water to the surface. Staging tanks (portable) are used to collect dirty water produced from the extraction panels for temporary storage prior to being pumped into the goaf for de-silting via percolation through the workings and subsequently clean water runs under gravity to the submersible pumps for transfer to the surface.
Figure 3.4: Ventilation Shaft No. 3

LEGEND
- Pollution Control Structure

CENTENNIAL SPRINGVALE PTY. LTD.
THIS DRAWING IS COPYRIGHT
NO PART OF IT IN ANY FORM OR BY ANY MEANS (ELECTRONIC, MECHANICAL, MICRO-COPYING, PHOTOCOPYING OR OTHERWISE) BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED WITHOUT PRIOR WRITTEN PERMISSION.

DATE: 17/11/2013
SEAM: LITHGOW
REFERENCE: 127623060-R-F008 SVC Rev 0
SCALE: 1:1,250
Photograph 3.1: Typical Dewatering Facility
Since commencing operations in 1993, Springvale Mine has drilled and operated a total of seven mine dewatering facilities within the Newnes State Forest on the Newnes Plateau. All dewatering facilities have been located at low points in the mine along the northern (down-dip) perimeter of the workings.

The first dewatering bore on the Newnes Plateau (Bore 1) was commissioned in March 1997, with mine water extracted from Bore 1 and further bores (Bores 2 to 4) in series. Prior to 2006, the bores transferred water to settlement ponds on Newnes Plateau, where settling occurred. This water was then discharged via LDP004 and LDP005 into tributaries of the Wolgan River.

The SDWTS was commissioned in 2006 as part of a Pollution Reduction Programme when Bore 5 dewatering became operational in February 2006.

The SDWTS functions to reduce the volume of water sourced by the power station from the regional surface rivers and lakes which feed into the Sydney drinking water catchment. Currently, the SDWTS has a maximum total capacity of 30 ML/day for most of the network except between Springvale Mine’s Licensed Discharge Point LDP009 (Section 3.11.1) and Wallerawang Power Station where the capacity is approximately 58 ML/day.

To date the dewatering facilities have included dewatering Bores 1 to 5, and Bore 6 which is in the process of being decommissioned. Bore 8 dewatering facility is currently being commissioned and will be used to manage mine inflows from LW416 to LW419 and will be operational till end of 2016. It is licensed as a dewatering bore by the NSW Office of Water (10BL603519). The Bores 930 and 940 dewatering facilities at Angus Place Colliery also connect to the SDWTS (not shown) via trenched pipelines.

An in–seam pumping system is available at the Ventilation Shaft 3 site for further dewatering of mine inflows, and is used as required. It is licensed as a mining dewatering bore by the NSW Office of Water (10BL601863).

3.10.4 Non-mine Owned Infrastructure

There are a number of items of non-mine owned infrastructure within and surrounding the Project Application Area. These include overhead powerlines (11 kV and 66 kV), telecommunications towers, the external road network and the Newnes State Forest.
Figure 3.5: Site Access Routes

LEGEND

- Project Application Area
- Village
- Town
- Mine Services Borehole
- Rail
- Main Road
- Dewatering Facility
- Pit Top Access Route
- Contingency Coal Haul Route
- All Vehicle Access Route
- Light Vehicle Access Route
- Heavy Vehicle Access Route
- Proposed Infrastructure Corridor
- Environmental Study

CENTENNIAL SPRINGVALE PTY. LTD.

THROUGH THIS DRAWING IS COPYRIGHT

NO PART OF IT IN ANY FORM OR BY ANY MEANS (ELECTRONIC, MECHANICAL, MICRO-COPYING, PHOTOCOPYING OR OTHERWISE) BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED WITHOUT PRIOR WRITTEN PERMISSION.

DATE: 17/11/2013
SEAM: LITHGOW
REFERENCE: 127623060-R-F026 SVC Rev 0
SCALE: 1:100,000

Centennial Coal
Springvale

Mt Piper Power Station
Springvale Coal Services Site
Angus Place Pit Top
LIDSDALE
Springvale Pit Top
Wallerawang Power Station
Springvale Pit Top
Wallerawang Power Station

Mt Piper Power Station
Springvale Coal Services Site
Angus Place Pit Top
LIDSDALE
Springvale Pit Top
Wallerawang Power Station
Springvale Pit Top
Wallerawang Power Station
3.11 Water Management

The water management system at Springvale Mine site comprises surface (clean and dirt water) process, potable, waste and underground (clean and dirty water) mine water elements. The water management systems at both Springvale Mine and at Springvale Coal Services site are managed in accordance with site water management plans specific to each site.

The primary objective of the existing Site Water Management System is to manage and minimise the impact of mining operations on surface and groundwater resources.

Figure 3.6 illustrates an overall schematic of the Springvale Mine water management system.

3.11.1 Licensed Discharge Points

EPL 3607 defines the volumetric and concentration limits for water discharge offsite and the recording and reporting of data requirements. EPL 3607 currently also regulates the discharge of water at the Springvale Coal Services site. In accordance with EPL 3607, water is discharged from Springvale Mine through Licensed Discharge Points (LDPs). Currently Springvale Mine has seven LDPs on EPL 3607, the locations of which are shown in Figure 3.7. The LDPs (and their volumetric limits) consist of the following:

- **LDP001** (volumetric limit 10 ML/day) – discharge of surface water, mine water make and runoff from the Springvale pit top area into Springvale Creek through settling ponds.
- **LDP002** – discharge of treated sewage effluent via a spray irrigation network to a designated utilisation area within the Springvale pit top area.
- **LDP004** (volumetric limit 15 ML/day) – emergency discharge point situated on the Newnes Plateau into an unnamed tributary of the Wolgan River. This is situated in the Hawkesbury/Nepean Catchment. In the event of a shutdown of SDWTS or essential maintenance, discharge is permitted through this LDP.
- **LDP005** (volumetric limit 15 ML/day) – emergency discharge point situated on the Newnes Plateau into an unnamed tributary of the Wolgan River. This is situated in the Hawkesbury/Nepean Catchment. In the event of a shutdown of SDWTS or essential maintenance, discharge is permitted through this LDP.
- **LDP006** (volumetric limit 10 ML/day) – discharge of runoff into Wangcol Creek through final filter lagoon located at the Springvale Coal Services site.
- **LDP007** – discharge of runoff from the overland conveyor system, including coal fines, located at Brays Lane discharges into Coxs River.
- **LDP009** (volumetric limit 30 ML/day) – discharge from the SDWTS bypass point east of Kerosene Vale Ash Dam for discharge into Coxs River.
- **LDP010** – emergency/maintenance discharge from the SDWTS, upstream of settling ponds near LDP009 for discharge into Coxs River.

3.11.2 Surface Water Management

The surface water management systems at the pit top and the Springvale Coal Services Site rely on the separation of clean and dirty water and the effective management of water through collection, treatment and discharge. This is managed through a number of separate water systems including surface water dams and/or settling ponds, and clean water diversion channels.

Process water used for operational requirements sourced from groundwater (mine water or mine inflows) has a separate water management system (pit top collection system) as described Section 3.10.2.
Figure 3.6: Overall Water Management Schematic

Water management schematic as provided by GHD Water and Salt Balance Assessment, October 2013.

No part of it in any form or by any means electronic, mechanical, micro-copying, photocopying or otherwise be reproduced, stored in a retrieval system or transmitted without prior written permission.

CENTENNIAL SPRINGVALE PTY. LTD.

THIS DRAWING IS COPYRIGHT

DATE 17/11/2013
SEAM LITHGOW
REFERENCE 127623060-R-F028 SVC Rev 0
SCALE NOT TO SCALE

Lithgow Seam (Springvale Workings)
Figure 3.7: Licensed Discharge Points

Centennial Springvale Pty. Ltd.

This drawing is copyright

No part of it in any form

Or by any means (electronic, mechanical, micro-copying, photocopying or otherwise)

Be reproduced, stored in a

Retrieval system or transmitted

Without prior written permission

Natural text not available for this page.
Figure 3.8: Clean and Dirty Water Flow Paths and Catchments

Legend:
- Licensed Discharge Point
- Clean Water Diversion with Flow Direction
- Dirty Water Diversion with Flow Direction
- Street/Track
- Watercourse
- Pollution Control Structure
- Dirty Water Catchment
- Clean Water Catchment

Flow paths sourced from GHD October 2013.
3.11.2.1 Surface Water Management at Springvale Pit Top

Surface water storages for both clean and dirty water at the Springvale pit top and Newnes Plateau include the following dams, illustrated in Figure 3.8.

- **Fire Dam** (8 ML capacity): Receives mine water from the Renown Colliery workings and existing Springvale Mine workings using the Fire Service Pipeline and the pit top collection system for storage and use as process water:
 - underground for continuous miners and longwall equipment and dust suppression; and
 - for surface facilities including the crusher and screening plant, vehicle washdown bay, maintenance and service workshop and for dust suppression; and
 - excess mine water from the Fire Dam is discharged through LDP001.

- **Settling Ponds**: Three settling ponds, referred to as the Primary, Secondary and the Duck Ponds, exist at the pit top and perform the following functions:
 - The Primary or Stockpile Pond (7 ML) receives dirty water run-off from the crusher and screening plant and run-off from the contributing dirty water catchment. The Primary Pond overflows into the Secondary Pond. The Primary Pond is designed to handle a 1 in 100 year, 24 hour storm event. The pond volume is normally maintained at a low level to ensure maximum capacity is available to capture runoff in a storm event. The Secondary Pond (7 ML) receives dirty water overflows from the ROM coal stockpile area, the oil/water separator and the run-off from the contributing dirty water catchment. Excess water from the Secondary Pond is pumped underground into Renown Colliery workings for purification via percolation through the workings for subsequent use as process water. The Secondary Pond is designed to handle a 1 in 100 year, 24 hour storm event; and
 - Duck Pond (2 ML) receives dirty water run-off from the car park, administration and bathhouse areas. It discharges to Springvale Creek via LDP001.

- **Oil/Water Separator**: Excess water from the Grit Trap, wastewater from the machinery wash-down bay, hardstand areas, oil storage areas, and workshop, and run-off from the contributing dirty water catchment is collected in a common wastewater collection drain, which gravity feeds to an oil/water separator unit. Water from the oil/water separator is transferred to the Secondary Pond. The oil/water separator is designed to accommodate a 1 in 5 year storm event, based on the first flush principle, without overflow. Oil and grease from the separator is disposed off-site by a licensed contractor.

- **Sewage Treatment Facility**: receives wastewater (grey water and sewage) from the bathhouse and other buildings contribute to the onsite sewage treatment facility. The wastewater passes through a set of effluent ponds and is subsequently disposed of via an onsite irrigation system (Section 3.11.6).

- **Emergency Holding Dam**: (3.6 ML), located at the Ventilation Shaft 3 Facility (Figure 3.4) on the Newnes Plateau for the storage of mine water for subsequent use by bushfire fighting helicopters as required.

The volume of dirty water that is treated is minimised by limiting the contamination of clean water through use of diversions bunds and capturing dirty water in settling dams for treatment prior to re-use or discharge off site. The use of clean water is minimised through maximising the re-use of mine water underground for dust suppression and other process water requirements.

3.11.2.2 Surface Water Management at Springvale Coal Services Site

The Springvale Coal Services Site operates under a Surface Water Management Plan (approved by the then Department of Planning in August 2009). The surface water management systems consist of a partial separate clean and dirty water flow paths. Dirty water is controlled by a series of dam structures with excess water being discharged through LDP006.
Dirty water is captured and contained within four main pollution control dams referred to as the Washery Dam, Stockpile Dam, DML Dam and Cooks Dam. Furthermore, several smaller pollution control structures exist around the Lamberts Gully Open Cut Mine area, as well as two structures located within the Lamberts Gully drainage line. These latter structures are known as the Conveyor Dam, which is divided by the overland conveyor system and the Retention Dam, which is located near the site entrance. Locations of the dams are shown in Figure 3.3.

Stored water from the main pollution control structures (Washery, Stockpile, DML and Cooks Dams) is preferentially re-used on site to supply the existing CHPP and for other raw water uses, such as dust suppression. The Surface Water Management Plan for the site includes procedures for pumping between the various water storages in order to maximise both stormwater retention and recycling abilities. EPL 3607 includes a number of additional water management improvements which have been implemented. These include establishing additional pumping capacity, further recycling initiatives, additional runoff controls around the CHPP area, and further environmental investigations that may lead to additional controls in the future.

3.11.2.3 Surface Water Management within Newnes Plateau Infrastructure Sites

Each Newnes Plateau infrastructure site (Ventilation Shaft 3 Facility, Bore 8 Dewatering Facility, Substation 4) has its own surface water management system to ensure no dirty water discharges off site. Each site has clean water diversion bunds and level spreaders which divert clean storm water away from the disturbed areas. Sediment dams in the case of the Ventilation Shaft Facility 3 (Figure 3.4) and the sump in the case of the dewatering bore facilities capture dirty water run-off from the respective sites for treatment prior to discharge of clean water off site.

3.11.3 Underground Water Management

Mine inflows, encountered during mining operations, require to be managed so that water levels can be kept at safe levels underground, and therefore operational risks can be reduced. Both clean and dirty water are generated underground. Clean water is water make from the goaf areas that do not experience machine movements. Dirty water comprises water that run along roadways and mine inflows from production panels. The dirty water is collected into portable staging tanks and pumped into the existing workings for the sediment to settle out before being diverted to the clean water system for transfer to the surface.

The clean water from the existing workings runs under gravity to the submersible pumps to allow transfer of water to the surface at the two bore dewatering facilities, namely, Bore 8 dewatering facility and the Ventilation Shaft 3 borehole. Dewatered mine inflows at these bore sites are fed directly into the SDWTS for transfer to the Wallerawang Power Station for use in their cooling towers.

A maximum of up to 30 ML/day of mine water can be transferred to Wallerawang Power Station. If the power station is unable to take any water then the mine inflows are discharged into Coxs River via LDP009 in accordance with EPL 3607 volumetric limit of 30 ML/day.

In the event that the SDWTS is unavailable for extended periods provisions exist in EPL 3607 to discharge mine inflows to the maximum of 30 ML/day each at LDP004 and LDP005 on Newnes Plateau. Discharges at LDP004 and LDP005 have not occurred since April 2010.

Underground water from the existing workings and Renown Colliery workings is also pumped to the surface via the pit top collection system to meet operational requirements, both for underground operations and surface facilities.

3.11.4 Site Water Requirements – Existing

A comprehensive site water balance assessment has been conducted to quantify surface and groundwater budgets for existing (and future) operations. The water balance (Appendix F) reviews the site water requirements, available water storage and discharge volumes for Springvale Mine. The largest water transfers are associated with mine water make, including underground transfers and transfers from the underground to the surface. Total site water requirements are illustrated in Table 3.6.
Table 3.6 Annual Site Water Requirements – Existing

<table>
<thead>
<tr>
<th>Facility Usage</th>
<th>Annual Value (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop</td>
<td>30</td>
</tr>
<tr>
<td>Vehicle washdown</td>
<td>30</td>
</tr>
<tr>
<td>Bath House and Administration Building (portable water)</td>
<td>10</td>
</tr>
<tr>
<td>Process water (underground operations, screening and crushing plant)</td>
<td>279</td>
</tr>
<tr>
<td>Total</td>
<td>349</td>
</tr>
</tbody>
</table>

3.11.5 Potable Water

Potable water is supplied to Springvale Mine from Lithgow City Council. This water is primarily used in the bathhouse and administration building. Additional drinking water for employees is sourced from a local commercial drinking water supplier. This is immaterial to the water balance.

No change is proposed to the provision of potable water to Springvale Mine by Lithgow City Council for use in the administration buildings and bathhouse.

3.11.6 Wastewater Collection and Treatment

Sewage and grey water at the pit top area is currently treated on site by a sewage treatment works (Figure 3.2).

Sewage and grey water gravitate from the bathhouse and offices and is pumped to an oxidation pond and then to a maturation pond. The treated effluent is pumped via LDP002 to a sprinkler system in a 4 ha onsite utilisation area. The sprinklers are in four separate zones which are alternated to ensure full utilisation and to eliminate run off from the utilisation area.

A modification application for the site (DA11/92 MOD 4), approved Springvale Mine’s proposal to bypass the on-site effluent management system and pump sewage direct into the Lithgow City Council’s main sewer services at the intersection of Wolgan Road and Duncan Street (Duncan Street pump station) in Lidsdale.

Following the decommissioning of the existing sewage treatment works all onsite sewage will be pumped directly to the Council sewer system. The works will involve:

- Replacement of the pump(s) within the existing onsite pumping station with two pumps of 4L/s capacity; and
- Laying a 75 mm sewer line from the existing pumping station at the pit top to the connection point to the Council reticulation system.

Connection to the mains will be undertaken by connection to tie in point at Duncan Street/Wolgan Road intersection. The path for the sewer line will be via the ROM coal conveyor corridor (likely to be attached to the conveyor). From the conveyor the sewer line will be taken across approximately 100 m of land to Duncan Street/Wolgan Road intersection, which is likely to include trenching and under-boring. From the conveyor corridor onwards, the sewer line will be predominantly within the road corridor of the adjoining land under lease to Springvale Coal, however there may be some work required within the adjoining freehold land.

Prior to the commencement of onsite sewer connection to the Council’s sewer system a section 68 (Local Government Act 1993) application will be submitted to Lithgow City Council for the proposed works. The application will provide detailed information on the route of the proposed sewer line (with appropriate plans and specifications). Any additional information required by Council (for example peak hourly flows) will be provided with the section 68 application.
3.12 Waste Management

Production Waste
The reject materials (fine and course) produced during the processing of ROM coal is emplaced at the Springvale Coal Services Site, as discussed in Section 3.7.2.

Non-Production Waste
The major general waste streams from the mine include water, coal fines from surface runoff, packaging material including plastic, paper and cardboard, wood, waste oil, oil filters, oil drums, scrap metal, hoses, bottles (plastic and glass), sewage effluent, as well as general putrescible rubbish.

General waste is disposed of to landfill by licensed waste contractors. Recyclable materials, for example, plastic, paper and cardboard products, are recycled whenever possible at the site. Oil drums and filters are recycled with other waste metals, and are removed from site by a metal recycling company. Waste oil collected in the workshop is stored in an underground collection sump before being removed off site by a licensed contractor for recycling. Sewage is treated and applied to land in the on-site sewage treatment plant.

Paper, plastic and cardboard are recycled both from bulk packaging from the store and site offices, either at the pit top or other infrastructure areas or transferred to a recycling facility.

Waste Management is managed in accordance with the existing MOP with all potentially hazardous material stored and/or bunded appropriately in accordance with relevant standards. Where possible, all quantities of waste or recyclable material are quantified and recorded for benchmarking and continuous improvement purposes as well as reporting in accordance with the National Greenhouse and Energy Reporting Scheme.

3.13 Environmental Management

3.13.1 Introduction
Springvale Mine has an established Environmental Management System (EMS) that has been developed in accordance with the Centennial Framework. It provides an environmental management framework for all activities and areas managed at Springvale Mine.

The EMS applies to:
- Springvale Mine lease area – all surface and underground operations;
- all personnel who have specific responsibilities and duties within the EMS and associated standards and procedures; and
- all mine employees, contractors and external parties.

3.13.2 Centennial Environmental Policy
Springvale Mine has adopted the Centennial Environmental Policy that sets out Centennial Coal’s aims and values applicable to all employees and contractors. The Policy underpins the Centennial Environmental and Community Management Standards. The Environmental Policy has been endorsed by the Board of Directors and Mine Manager and is a commitment from top management to the community and the Mine’s employees.

3.13.3 Environmental Management System and Management Plans
The EMS is a comprehensive set of environmental management plans, which have been developed in accordance with approval requirements and Table 3.7 outlines the various site management plans.
Table 3.7 Springvale Mine Environmental Management Plans

<table>
<thead>
<tr>
<th>Management Plan or System</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Management Strategy</td>
<td>The Environmental Management Strategy provides an overall structure for environmental management at Springvale Mine including the strategic context, statutory requirements and roles and responsibilities of key personnel.</td>
</tr>
<tr>
<td>Public Safety Management Plan</td>
<td>This plan describes the processes to ensure public safety in surface areas that may be affected by subsidence arising from longwall mining.</td>
</tr>
<tr>
<td>Infrastructure Management Plan</td>
<td>This plan assists in the management of the risks to infrastructure as a result of subsidence and mining.</td>
</tr>
<tr>
<td>Land Management Plan</td>
<td>This plan describes management measures for surface cracking, erosion, soil slumping and land degradation caused by subsidence and/or associated activities.</td>
</tr>
<tr>
<td>Subsidence Management Plan (SMP)</td>
<td>The SMP provides significant detail around the management of subsidence impacts on the natural and built environment.</td>
</tr>
<tr>
<td>Subsidence Monitoring and Reporting Programme</td>
<td>This programme provides a means to measure how the effects of subsidence are monitored. The programme includes monitoring pre and post mining and ensures ongoing baseline data collection, investigation assessment and regular review with relevant stakeholders.</td>
</tr>
</tbody>
</table>
| Subsidence Community Consultation Process | The subsidence community consultation process fulfils the requirements of the SMP approval. The objectives of this process are to:
 - effectively communicate with relevant stakeholders regarding subsidence on the Newnes Plateau;
 - define responsible parties within Centennial in respect of the communication paths and forums;
 - monitor and manage issues from relevant stakeholders; and
 - maintain a complaints protocol. |
<p>| Flora and Fauna Management Plan | The purpose of this plan is to protect threatened species and communities, minimise impact on native flora and fauna, manage clearing, control weeds, and control access to environmentally sensitive areas. |
| Persoonia hindii Management and Research Program | This program has involved investigations and trials on Persoonia hindii and is ongoing. The outcomes this research and monitoring programme will provide information to inform future management decisions regarding potential impacts to Persoonia hindii. |
| Newnes Plateau Shrub Swamp Management Plan | The purpose of this plan is to measure and manage potential subsidence impacts from longwall mining (within the Subsidence Management Plan) on the Newnes Plateau Shrub Swamps. |
| Environmental Monitoring Programme | The Environmental Monitoring Programme consolidates all monitoring requirements developed in the individual management plans and monitoring programmes. The purpose of environmental monitoring is to gather data on the performance of the operation and determine the need for improvements or additional mitigation measures. |
| Air Quality Management Plan | This plan provides for the monitoring and management of air quality at Springvale Mine. |
| Noise Monitoring Programme | This programme sets out procedures for monitoring and assessing noise impacts from Springvale. |
| Site Water Management Plan | This plan coordinates the management of all surface water within the Springvale Mine holding boundary in an efficient and sustainable manner. |
| Groundwater Management Plan | This plan coordinates the management of all groundwater within the Springvale Mine holding boundary in an efficient and sustainable manner as per relevant bore licences. |</p>
<table>
<thead>
<tr>
<th>Management Plan or System</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion and Sediment Control Plan</td>
<td>This plan, covering the pit top and Newnes State Forest, has been prepared in accordance with the Department of Housing’s “Managing Urban Stormwater: Soils and Construction Manual” (Landcom, 2004) (the ‘Blue Book’). It ensures that water discharged off site complies with suspended solids limits as detailed in EPL 3607. It includes the following: • identification of sources of sediment; • description of management principles to be implemented; • description of the erosion sediment control structures in place; and • description of measures to be implemented to decommission structures over time.</td>
</tr>
<tr>
<td>Contractor Environmental Management Plan</td>
<td>This plan aims to ensure that all activities carried out on behalf of Springvale Coal comply with internal and external practices and guidelines.</td>
</tr>
<tr>
<td>Bushfire Management Procedure and Management of Bushfire Assets Procedure</td>
<td>These set out the procedures for reporting fire and for the inspection and maintenance of firebreaks and asset protection zones at the pit top and on the Newnes Plateau.</td>
</tr>
<tr>
<td>Ventilation Management System</td>
<td>In accordance with Clause 21 of the Coal Mine Health and Safety Regulation 2006, Springvale Coal has implemented a Ventilation Management System (that includes a Ventilation Monitoring Arrangement) to ensure as far as reasonably practicable the safety of all persons present at the coal operation with regard to mine ventilation.</td>
</tr>
<tr>
<td>Strata Failure Management Plan</td>
<td>In accordance with Clause 28b (ii) of the Coal Mine Health and Safety Regulation 2006 the objectives of this management system are to ensure as far as reasonably practicable the safety of all persons present at the coal operation with regard to underground strata.</td>
</tr>
<tr>
<td>Pollution Incident Response Management Plan</td>
<td>The plan details the procedures for notification of pollution incidents resulting in or having the potential to cause material harm to human health or the environment. It is prepared to comply with pollution incident response management obligations as detailed in the Protection of the Environment Operations Act 1999.</td>
</tr>
</tbody>
</table>
3.13.4 Monitoring and Reporting

The management plans are supported by an environmental monitoring network, monitoring noise, dust, groundwater, surface water and subsidence. Monitoring locations are illustrated in Figure 3.9. An overview of the monitoring programmes is provided. Details of the monitoring results are provided in Chapter 10.0.

Noise

Since December 2010, the noise monitoring programme at Springvale Mine has provided quarterly background noise levels at the site at the representative residential receivers S1, S2 and S3 (Figure 3.9). This is in compliance with the requirements of EPL 3607.

Dust

The dust monitoring network at Springvale comprises static dust gauges 1-5 (Figure 3.9).

Groundwater

Groundwater monitoring programmes at Springvale commenced in 2002 and comprise groundwater level monitoring details for swamps, shallow aquifers and deep aquifers. The current monitoring network comprises:

- 24 standpipe piezometers that monitor water levels in 10 shrub swamps;
- 14 standpipe piezometers that monitor shallow groundwater levels in the Banks Wall sandstone; and
- 18 vibrating wire piezometers to monitor pore water pressures in units underlying the Mount York Claystone and different horizons in the shallow aquifers.

Additional monitoring points are also being continually added to the network.

Surface Water

The surface water monitoring programme at Springvale comprises:

- seven surface water flow monitoring stations at swamp discharge points;
- six monitoring locations along Coxs River (upstream and downstream), Marrangaroo Creek (upstream and downstream), and Springvale Creek; and
- eight LDPs undertaken in accordance with the conditions contained within EPL 3607.
Swamp Monitoring

A THPSS Management Plan was prepared in 2012 to:

- analyse monitoring data and previous studies collected in the THPSS since 2003;
- evaluate current monitoring programmes and the capacity of the monitoring programmes to deliver the outcomes requested in approval 2011/5949;
- use the monitoring data to determine the likelihood of mining related impacts on the Newnes Plateau THPSS;
- provide an ongoing monitoring programme to determine whether mining causes impacts on the THPSS;
- provide a series of response triggers to determine whether any mining related impacts occur and to address any mining related impacts should any occur;
- provide a series of management actions should any mining related impacts occur;
- provide an overview of remediation strategies to be used on the THPSS if any mining related impacts occur; and
- provide a framework for reporting on the performance of the strategies.

Ongoing THPSS monitoring has been undertaken in accordance with THPSS Management Plan.

Subsidence

A subsidence monitoring programme is in place at Springvale Mine to measure maximum vertical subsidence induced by previous and current mining, and include ground surveys along representative subsidence monitoring lines. The locations of the subsidence monitoring lines are shown in Figure 3.9.

Together with the Plans outlined in Table 3.7, the results of these monitoring programmes are reported in:

- Annual Reviews (formerly Annual Environmental Management Reports);
- Annual Returns for EPL 3607;
- Quarterly Subsidence Management Status Reports;
- Longwall End of Panel Reports;
- National Pollutant Inventory reports; and
3.13.5 Audits and Continuous Improvements

Centennial Coal has developed an environmental management strategy supported by an Environmental Policy, the EMS Framework and a series of corporate objectives and targets. At the corporate level, the Centennial Coal EMS Framework describes actions required to be undertaken by Springvale Coal to meet the minimum expectations of Centennial Coal in delivering environmental performance outcomes. These actions are required to ensure environmental performance is measured, monitored, trended, tracked and reported.

Internal audits are completed periodically to ensure the EMS is operating in accordance with the Centennial EMS Framework with continuous improvement identified and implemented where feasible.

The EMS at Springvale Mine focusses on ensuring compliance with consent conditions through these internal audits and continued implementation of management plans and monitoring programmes. This includes continuous improvements to water management and noise management, and EMS training to all staff to heighten environmental awareness at the site.

In 2013 Springvale Mine reviewed the following strategies and management plans to incorporate consent conditions of DA11/92 MOD 3 relating to the construction and operation of the Bore 8 dewatering facility:

- Environment Management Strategy;
- Environmental Management Plan;
- Groundwater Management Plan; and
- Mining Operations Plan.

Springvale Mine developed the following plans and programs in response to the DA11/92 Mod 3 consent conditions:

- Erosion and Sediment Control Plan, specifically for the Bore 8 Project Application Area;
- Rehabilitation Management Plan, specifically for the Bore 8 Project Application Area; and
- *Persoonia hindii* Management and Research Program on Newnes Plateau (refer Section 3.13.8).

Centennial Coal has identified two actions to further improve the management of groundwater (mine inflows) from its mines in the Western Operations and to enhance the current understanding of the environmental values associated with any proposed water management scenarios. In summary, these actions were:

- Completing impact assessments for the proposed Life of Mine Water Management Strategy as part of the EISs the Springvale and Angus Place Mine Extension Projects; and
- Investigating the feasibility of potentially removing LDP004 and LDP005 (Newnes Plateau emergency discharge points) from Springvale Mine’s EPL3607.

The Life of Mine Water Management Strategy, which has been now been assessed in this EIS (Section 10.2.4), concluded that beneficial reuse of the mine inflows intercepted by Springvale Mine and Angus Place Colliery for an industrial purpose is the most suitable use.

3.13.6 Pollution Incident Response Management Plan

In September 2012 a Pollution Incident Response Management Plan (PIRMP) was developed and implemented at Springvale Coal Services Site to satisfy the requirements of section 153A of the *Protection of the Environment Operations Act 1997* (POEO Act) which requires the preparation, implementation and publication of a PIRMP. Similarly, a PIRMP (SV-MP-1122) was prepared for the Springvale pit top in August 2012. The PIRMPs for the pit top and the Springvale Coal Services site are available on the Centennial Coal website.
3.13.7 Pollution Reduction Program
In 2011, the NSW Environment Protection Authority required, through a Pollution Reduction Program, that Springvale Mine provide a site Specific Particulate Matter Control Best Practice Assessment report which examines in detail the potential measures which could be employed to further reduce particulate emissions from the mine. The report, prepared by SLR Consulting Australia Pty Ltd, was prepared in accordance with the Coal Mine Particulate Matter Control – Best Practice: Site Specific Determination Guideline (OEH, 2011a) to comply with the OEH specifications as stipulated in the Licence Variation Condition U1 of EPL 3607.

3.13.8 Persoonia Hindii Management and Research Program
Recent investigations and trials on Persoonia hindii, as part of the Persoonia hindii Management and Research Program have found the following.

- Approved translocation of plants from impact areas to an interim location, and then re-translocation back to original site, was forecast by experts to not be successful.
- Recent translocations on the Newnes Plateau, have largely been unsuccessful.
- Variation on translocation requirements, now includes measures such as cutting and propagation, and harvesting of seed for germination and establishment. 10% of cuttings have been successfully struck which is a positive outcome given the challenge of propagating this species.
- 100 fruit have been collected to identify appropriate fruit maturity state to maximise productive seed and overcome seed senescence. It is anticipated that propagation from seed is likely to improve plant establishment.
- Comprehensive mapping utilising a newly developed survey methodology adapted to the plant growth habit has found more plants that previously mapped.

It is anticipated that the Project will require some further focused mapping, however, the current investigation of propagated cuttings and seed establishment is likely to ensure successful plant establishment.
3.14 Rehabilitation and Final Landform

Springvale Mine has adopted a progressive approach to rehabilitation to reduce and mitigate potential environmental impacts. Facilities no longer required, for example, ventilation and dewatering facilities, are rehabilitated soon after decommissioning, to return disturbed land to the original landform. Rehabilitation followed up with periodic inspections and maintenance as necessary based upon evidence of endemic regrowth, weeds and soil disturbance. Rehabilitation acceleration techniques are undertaken, if required following approval from Forestry Corporation of NSW and in accordance with the Occupation Permit. Rehabilitation has been successfully undertaken at Bores 1 to 5 dewatering facilities, and will be undertaken for the recently decommissioned Bore 6 Progressive rehabilitation is also undertaken within exploration drill hole sites on completion of each exploration programme.

Rehabilitation works on Newnes Plateau involve the decommissioning of all surface infrastructure, grouting and sealing of boreholes, and dozer trimming of the area to facilitate appropriate drainage of surface runoff. Re–spreading of topsoil and re–seeding of the disturbed area is carried out with endemic native species where possible, to achieve a final land use of open forest. The success of progressive rehabilitation activities is monitored against appropriate performance indicators identified within Centennial EMS framework: Springvale Mine’s “Standard Work Procedure T034 – Rehabilitation of sites on Newnes Plateau” and relevant regulatory requirements for rehabilitation.

Minor rehabilitation activities are carried out at the pit top. This includes the seeding of the area surrounding the carpark and adjacent to the conveyor. Given that Springvale Mine is well established with no ongoing construction requiring the implementation of additional erosion and sediment controls, there is no requirement for the regular progressive rehabilitation at the pit top. It is envisaged that the current pollution control structures will remain in place for the life-of-mine.

Progressive rehabilitation activities at the Springvale Coal Services site are minimal as the site is still in operation but does occur at the reject emplacement areas on a regular basis.
CHAPTER 4.0

Project Description
4.0 PROJECT DESCRIPTION

4.1 Overview

As noted in Section 1.8, in brief, the Springvale Mine Extension Project includes:

- all currently approved operations, facilities and infrastructure of the Springvale Mine, except as otherwise indicated in this EIS (Table 4.1);
- extension and continuation of longwall mining for a further 13 years from the date of consent with rehabilitation to be undertaken following this period; and
- modifications to existing facilities and infrastructure, and construction and operation of new facilities and infrastructure, within the Project Application Area of the Springvale Mine Extension Project that are required to support the Project.

The Project will continue to employ retreat longwall mining methods. It will continue to use the existing surface and underground infrastructure at the pit top and Newnes Plateau as described in Chapter 3.0. The Project is proposing to construct or establish and operate new infrastructure both on the surface and underground, as appropriate (Table 4.1). The Project will progressively decommission infrastructure and rehabilitate associated disturbance areas no longer required for operations.

The Project will not significantly alter the nature of the existing operations at Springvale Mine. On cessation of mining activities the Project will rehabilitate all disturbed areas associated with the pit top and the Newnes Plateau infrastructure areas to create final landforms commensurate with the surrounding areas.

A comparison of existing operations and the Project are provided in Table 4.1. New infrastructure and elements to support continued operations at Springvale Mine are illustrated in Figure 4.1 and the proposed mine plan is shown in Figure 4.2.

Table 4.1 Comparison of Existing Operations and the Project

<table>
<thead>
<tr>
<th>Key Feature</th>
<th>Existing Operation</th>
<th>The Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine Life</td>
<td>Existing consent (DA 11/92) expiry date is 30 September 2015.</td>
<td>▪ Seeking approval for continued operations of 13 years from date of consent. Rehabilitation activities may be completed following this period.</td>
</tr>
<tr>
<td>Hours of Operation</td>
<td>Mine operates 24 hours per day, 7 days per week 52 weeks per year.</td>
<td>▪ No change</td>
</tr>
<tr>
<td>Employment</td>
<td>Approved 310 full time personnel.</td>
<td>▪ No change</td>
</tr>
<tr>
<td>Coal Production</td>
<td>Annual extraction limit of 4.5 Mtpa of ROM coal.</td>
<td>▪ No change</td>
</tr>
<tr>
<td>Mining Method</td>
<td>Retreat longwall mining</td>
<td>▪ No change</td>
</tr>
</tbody>
</table>
Key Feature | Existing Operation | The Project
---|---|---
Pit Top
- Access via the Castlereagh Highway for employee, visitor and contractor parking areas.
- Portal access to underground workings for personnel and materials.
- Portal entrance providing for the coal conveyor drift to transport coal from underground workings.
- Administration buildings with amenities, office and training areas.
- Bathhouse.
- Workshops, hardstand areas, vehicle and equipment wash down areas.
- Diesel, solcenic hydraulic fluid and oil storage.
- Mining supplies and conveyor equipment storage areas.
- Dirty and clean water management systems in addition to provision of potable and waste water services.
- Sewage treatment works currently progressing to sewer connection in the near future.
- ROM coal stockpile area.
- Coal preparation (crushing and screening plant) and handling (conveyor systems and Rill Tower) facilities.
- Overland conveyor system connecting pit top to Wallerawang and Mount Piper Power Stations, Springvale Coal Services site and Lidsdale Siding.
- Telecommunications facilities
- Electrical distribution network including substations 1 – 3 connecting to Substation 0 at Lidsdale.
- Ancillary infrastructure.
- No change

Underground Mine Access
- Access to the underground mine through the main mine portal (Figure 3.2).
- Access to the mine extraction areas via existing headings and roadways.
- No change to underground access from the pit top.
- Extension of mains headings to the east.
- Development of roadways to access proposed longwall extraction areas.

Mining Area
- Longwall panels LW1, and LW401 – LW415 extracted to date.
- LW416 currently being extracted.
- Developments of LW416 and LW417 have been undertaken.
- Longwall panels LW416 to LW423 (yet to be extracted), are approved under the existing Development Consent DA 11/92.
- Continued mining of LW416.
- Proposed extraction of longwall panels LW417 to LW432 and LW501 to LW503.
Key Feature

Existing Operation

- An 85,000 tonne ROM coal stockpile area and a Rill Tower.
- Drift conveyor for transfer of coal from underground to the ROM coal stockpile area via Rill Tower.
- Reclaim conveyor for transfer of coal from the stockpile area to the crushing and screening plant.
- Overland conveyor system for transport of coal off site.
- Provisions of handling of 50,000 tonnes per annum of ROM coal to domestic markets by truck haulage.

The Project

- No change

ROM Coal Handling

- Sized ROM coal transported, using an overland conveyor system, to either Mount Piper or Wallerawang Power Station, or to the Springvale Coal Service site for stockpiling and processing.
- Transport of up to 50,000 tonnes per annum of ROM coal to local domestic market customers by road haulage from the pit top or Springvale Coal Services Site.

- No change in transport mode or customers.
- However, the operational management of coal processing and transport of coal from the Springvale Mine that is currently authorised under Development Consent DA 11/92 and Development Consent DA 326/02, will in effect be "transferred" to the development consent to be granted in respect of the Western Coal Services Project (see Section 1.8).
- The exception is that it is the development consent to be granted in respect of the Springvale Mine Extension Project (and not the development consent granted in respect of the Western Coal Services Project) that will authorise the transport of up to 50,000 tonnes per annum of coal to local domestic customers by road.

ROM Coal Transport

- ROM coal stockpiled and processed at Springvale Coal Services site under Springvale Mine's existing consent DA 11/92.
- Processed or product coal transferred to Lidsdale Siding Rail Loading Facility, via the overland conveyor system, for export markets.

- No change to stockpiling and processing of ROM coal at Springvale Coal Services Site, and transfer of coal to Lidsdale Siding Rail Loading Facility however, these activities to be undertaken as part of proposed Western Coal Services Project (State Significant Development 12_5579).

Coal Processing and Handling

- Air intake via the two surface portals at the pit top and two separate air intake shafts (Ventilation Shaft No.1 and Ventilation Shaft No.2) located off the pit top site.
- One upcast shaft (Ventilation Shaft No.3) located in the Newnes State Forest.

- Continued use of existing Ventilation Shafts 1 and 2).
- An additional downcast ventilation borehole, to be situated within the Bore 10 dewatering facility, to be established.
<table>
<thead>
<tr>
<th>Key Feature</th>
<th>Existing Operation</th>
<th>The Project</th>
</tr>
</thead>
</table>
| SDWTS and Bore Dewatering Facilities | The SDWTS, comprising a network of predominantly trenched pipelines and power cables, used for the transfer of mine inflows from the dewatering facilities to Wallerawang Power Station at the rate of 30 ML/day, and/or discharge into Coxs River via LDP009. | - Continued use of Bore 8 dewatering facility for the management mine inflows.
- Bore 8 dewatering facility to be decommissioned on completion of LW419 extraction.
- Bore 9 dewatering facility and associated infrastructure to be constructed and operated for proposed LW420 – LW423.
- Bore 9 dewatering facility and associated infrastructure to be constructed and operated for proposed LW420 – LW423.
- Bore 10 dewatering facility and associated infrastructure to be constructed and operated for proposed LW424 – LW432 and LW501 – LW503.
- No change to mine inflow management at the Ventilation Shaft No. 3 borehole.
- No change to extraction of mine inflows at the pit top collection system for operational requirements.
- Mine water fed into the SDWTS to continue to be transferred to Wallerawang Power Station at the rate of 30 ML/day, and/or discharged into Coxs River via LDP009.
- Extension of the SDWTS from the existing pipeline network to the proposed Bore 9 and Bore 10 facilities
- Duplication of sections of the SDWTS (between Sunnyside Ridge Road and LDP009 location) to a maximum capacity of 50 ML/day for handling increase in predicted inflows from the Project and Angus Place Colliery Extension Project. |

Mine inflows currently managed by the Bore 8 dewatering facility and the Ventilation Shaft 3 borehole, whereby water is directly fed into the SDWTS.
Key Feature

<table>
<thead>
<tr>
<th>Newnes Plateau Infrastructure and Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Operation</td>
</tr>
<tr>
<td>- Ventilation Shaft 3 Facility with Substation 5 and existing mine services borehole area.</td>
</tr>
<tr>
<td>- Substation 4.</td>
</tr>
<tr>
<td>- Bore 8 dewatering facility.</td>
</tr>
<tr>
<td>- Access to infrastructure areas via either the Old Bells Line of Road from the town of Clarence (light and heavy vehicles) or via State Mine Gully Road (light vehicles only).</td>
</tr>
<tr>
<td>The Project</td>
</tr>
<tr>
<td>- No change to infrastructure Ventilation Shaft 3 Facility (including Substation 5) or substation 4.</td>
</tr>
<tr>
<td>- Construction and operation of Bore 9 and 10 dewatering facilities, ventilation borehole at Bore 10 site, and establishment of associated infrastructure corridors for all sites.</td>
</tr>
<tr>
<td>- Construction and operation of a mine services borehole compound.</td>
</tr>
<tr>
<td>- No change to access routes to the infrastructure areas.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Springvale Coal Services Site Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Operation</td>
</tr>
<tr>
<td>- CHPP,</td>
</tr>
<tr>
<td>- raw and product coal stockpiles, coal reject emplacement areas,</td>
</tr>
<tr>
<td>- coal handling infrastructure,</td>
</tr>
<tr>
<td>- offices and control room</td>
</tr>
<tr>
<td>- water management systems</td>
</tr>
<tr>
<td>The Project</td>
</tr>
<tr>
<td>- As noted in Section 1.8, the existing infrastructure and operations at the surface of the Springvale Coal Services Site currently authorised by Development Consent DA 11/92 will in effect be "transferred" to the development consent to be granted in respect of the Western Coal Services Project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rehabilitation and Final Landform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Operation</td>
</tr>
<tr>
<td>- Progressive rehabilitation of infrastructure and exploration sites at the pit top, Newnes Plateau and Springvale Coal Services Site infrastructure areas undertaken as required.</td>
</tr>
<tr>
<td>The Project</td>
</tr>
<tr>
<td>- No change to ongoing progressive rehabilitation at the pit top and the Newnes Plateau.</td>
</tr>
<tr>
<td>- Life of mine rehabilitation to be undertaken of all disturbed areas associated with the pit top and Newnes Plateau infrastructure areas.</td>
</tr>
<tr>
<td>- Rehabilitation at the Springvale Coal Services site to be undertaken separate to this Project, as proposed in the EIS of the Western Coal Services Project (State Significant Development 12_5579).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exploration Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Operation</td>
</tr>
<tr>
<td>- Exploration activities undertaken within EL6974 and A460 boundaries. Approval for activity was sought under Part 5 of the EP&A Act</td>
</tr>
<tr>
<td>The Project</td>
</tr>
<tr>
<td>- Exploration activities to be undertaken within EL6974 and A460 boundaries. Approval sought in this Project under Part 4 of the EP&A Act.</td>
</tr>
</tbody>
</table>
Figure 4.2: Mine Plan

Coordinate System: GDA 1994 MGA Zone 56

Legend:
- Project Application Area
- Village
- Town
- Rail
- Street / Track
- Watercourse
- Existing Workings
- Proposed Workings

Additional Information:
- **Date:** 17/11/2013
- **Seam:** LITHGOW
- **Reference:** 127623060-R-F087 SVC Rev 0
- **Scale:** 1:50,000

CENTENNIAL SPRINGVALE PTY LTD.

THIS DRAWING IS COPYRIGHT

NO PART OF IT IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, MICRO-COPYING, PHOTO-COPYING OR OTHERWISE BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED WITHOUT PRIOR WRITTEN PERMISSION.
The proposed longwalls, the new infrastructure and elements to support continued operations at Springvale Mine are illustrated in Figure 4.1.

Springvale Coal is seeking approval for the construction of new proposed infrastructure within a proposed infrastructure footprint requiring vegetation clearing of 11.44 ha (Table 10.8) which is wholly contained within the ESAs shown in Figure 4.1. Should the location of any infrastructure component be required to be relocated within the ESA, Springvale Coal will undertake due diligence field inspections and targeted surveys of the proposed new location and the associated access tracks. The due diligence inspections will be undertaken by appropriately qualified specialists prior to commencement of works to ensure the potential for localised impacts and risks are minimised and, where necessary, appropriately managed. Cultural heritage and ecological inspections will be undertaken as a minimum, and where necessary noise impact assessments will be undertaken.

4.2 Exploration Programme

Exploration activities will continue to be undertaken within the Project Application Area with a view of refining the site’s existing geological model used for detailed mine planning. The exploration programme will be undertaken throughout the life of the Project and approval for these activities is sought as part of the Project.

All exploration activities will be carried out in accordance with the requirements of the Mining Act 1992 and relevant mineral authorities, including environmental impact assessment and development consent. Springvale Coal will continue to utilise area-based assessment procedures for the management of exploration activities to ensure that they are conducted in an environmentally responsible manner and with due consideration to the community. This will include a risk-based process for the selection, assessment and environmental management of proposed drill pad sites and access tracks based on environmental, geological, logistical and other operational constraints.

Due-diligence field inspections and targeted surveys of the proposed drill sites and associated access tracks will be undertaken by appropriately qualified ecologist and heritage specialists prior to commencement of works to ensure the potential for localised impacts and risks are minimised and, where necessary, appropriately managed. Noise assessments will be undertaken when proposed drill sites are in proximity to residential receptors. The combination of environmental sensitivity risk mapping and targeted due-diligence surveys of potential drill sites will provide greater flexibility in selecting the most suitable final drill site locations with minimal impact on the local environment and surrounding populace.

The location of proposed geological exploration boreholes is currently unknown, and as a consequence, detailed environmental and social impact assessment cannot be undertaken at this time. As the required drill hole locations are determined, Springvale Coal will undertake a series of due diligence assessments to consider ecology, archaeology and noise as relevant. The appropriate industry and legislative guidelines and policies in force at the time will be referenced and the assessments provided to the Department of Planning and Infrastructure.

The general approach of the due diligence assessments will be to conduct site investigation to ensure that significant impacts are avoided. For example, should the preferred drill hole location coincide with an endangered ecological community or Aboriginal artefact site, the drill hole location will be moved wherever possible. Following this micro-siting process, the due diligence reports will make a clear statement as to impact. In most cases, it is expected that only archaeology and ecology will be addressed; acoustic assessments will only be prepared by exception, should proposed drill holes be within an envelope likely to affect receivers.

In summary, drill sites and associated access tracks will be located where possible to:

- avoid threatened flora species;
- avoid hollow bearing trees;
- avoid endangered ecological communities;
minimise clearing; and
avoid identified Aboriginal heritage sites.

Mitigation measures and management strategies will be implemented to address the potential for erosion and downstream sedimentation, noise emissions and bushfire risk as appropriate. The drilling activity will be undertaken as described in detail in Section 3.2. On completion of exploration activities, all boreholes and surface disturbance will be sealed and rehabilitated in accordance with the appropriate guidelines and legislation at the time.

4.3 Land Preparation

Land preparation, including vegetation clearing, will be required for the Project for the following proposed activities, all proposed on Newnes Plateau:

- the construction of two additional dewatering facilities, namely Bores 9 and 10;
- establishment of access tracks and ancillary 10 m wide infrastructure corridors to Bores 9 and 10 sites, comprising upgrade of the existing tracks and creation of new sections of tracks;
- the establishment of the mine services borehole area; and
- duplication of the SDWTS to upgrade the pipeline network to a maximum capacity of 50 ML/day.

The vegetation clearing required for the proposed activities is approximately 11.44 ha. The vegetation communities proposed to be cleared are listed in Table 10.8.

Dewatering Facilities and Infrastructure Corridors

The construction footprint of each bore site will be approximately 90 m x 110 m while the final constructed footprint will be 50 m x 70 m. Drilling of the boreholes, using the blind boring method, will be undertaken as described for exploration drilling in Section 3.2.

Following vegetation clearing over the entire construction footprint at the Bores 9 and 10 drill pad site locations, and prior to the mobilisation of the drill rig and other plant required for the construction of the boreholes, erosion and sediment controls will be implemented. These controls, to mitigate any potential water quality impact on the receiving environment from surface disturbance, will be described in a detailed Construction Environmental Management Plan. The localised erosion and sediment controls (for example, sediment fences, clean and dirty water diversion structures), to be implemented at the drill pad sites (and the infrastructure corridors described below) will be consistent with the objectives of Springvale Mine’s Water Management System and will be carried out in accordance with the industry best practice principles for the region and guidelines for erosion and sediment control (Landcom, 2004). During construction a temporary sediment basin will be installed to capture dirty water runoff from disturbed areas via clean water diversion bunds installed on the perimeter of the site compound.

Cut-and-fill procedures will be undertaken on the cleared land to create an almost topographical level area. All disturbed areas will be stabilised as soon as practical after excavation activities using standard design guidelines (Landcom, 2004). The topsoil and subsoil stripped from the area will be stockpiled separately for subsequent use in rehabilitation. Best practice methodology will be employed during topsoil stripping and transportation to prevent excessive soil deterioration.

A sump to be installed for the storage and recycling of the drilling fluid during drilling of boreholes will be retained for operations and once the dewatering facility has been established and part rehabilitated to form a constructed footprint with a 20 m Asset Protection Zone around it. The sump will serve to capture dirty water run-off from the disturbed areas for treatment prior to discharge off site.

Vegetation clearing along the existing access tracks will only occur on both sides of the road to create a 10 m wide track which will be part rehabilitated to a final 5 m track. Sediment and erosion controls will be
installed within the infrastructure corridors encompassing access tracks to the drill pad sites and trenched SDWTS pipelines and power cables. Cross-banks and mitre drains will be constructed along sections of the access tracks at appropriate distances as dictated by topography, in accordance with DECC (2008) to convey run-off away from the road alignment. The infrastructure corridor will be conducted and graded to a crown to shed water in accordance with Landcom (2004).

The backfilled trench within the infrastructure corridor will be thoroughly compacted to avoid settlement/subsidence of the fill material and inadvertent channelisation of water. The top 150 mm of fill may subsequently be scarified or roughened (if required) to assist topsoil adhesion and vegetation establishment.

Mine Services Borehole Area

The land preparation and the installation of the erosion and sediment controls for the establishment of the 90 m x 100 m mine services borehole site will be carried out as described above for the Bore 9 and Bore 10 drill pad sites. The sediment and erosion controls installed will be permanent.

Duplication of the Springvale Delta Water Transfer Scheme

The land preparation and installation of the sediment and erosion controls for the SDWTS duplication section will be undertaken as described above for the establishment of infrastructure corridors to Bore 9 and Bore 10 drill pad sites.

4.4 Hours of Operation, Workforce and Project Life

Springvale Mine will continue to operate 24 hours a day, seven days a week, 52 weeks per year.

The Project will extend the life of Springvale Mine by 13 years from the date of consent.

Springvale Mine is approved to employ a workforce of 310 full-time employees.

4.5 Site Access

Springvale pit top will continue to be accessed via Mine Access Road which joins the Castlereagh Highway near Lidsdale (Figure 3.5). Similarly the Project will continue to use the two principal transportation routes between Springvale pit top and the surface infrastructure sites on Newnes Plateau, described in Section 3.5.

4.6 Mining

4.6.1 Mining Method

To continue operations at Springvale Mine, the Project will develop and extract longwall blocks in the existing northern, southern and southwest lease areas, comprising LW416 – LW423 (east of the existing workings) LW424 – LW432 (southeast of the existing workings) and LW501 – LW503 (southwest of the existing workings) as shown on Figure 4.2.

Development of new roadways, using continuous miners, will be undertaken to active mining areas on an ongoing basis ahead of longwall extraction to enable access to LW418 – LW432 and LW501 – LW503 panels. Development mining has progressed to LW417 as of September 2013.

The Project will not result in a change to the existing annual extraction rate of 4.5 million tonnes per annum ROM coal. The cutting height of the coal seam will typically be 3.2 m, within a maximum chock (roof support) range of 3.6 m. The lengths of the longwall panels will be variable.

Mine planning and design has considered sensitive surface features such as swamps, cliff-lines, significant rock features, watercourses and sites of cultural significance overlying the proposed mining areas on Newnes Plateau (Chapter 8 and Section 10.1). Through conservative mine planning, Springvale Mine has sought to reduce impacts upon these sensitive surface features. Mine planning has avoided undermining shrub and hanging swamps located in the north eastern corner and the eastern-most section of the Project Application Area.
As an engineering design control to manage subsidence, LW416 to LW431 will have overall void widths of 261 m and chain pillar widths of 58 m. For LW432 and LW501 to LW503, longwall dimensions are to be further reduced with void widths between 229 m and 261 m and chain pillar widths ranging from 35 m to 58 m. The depths of cover directly above LW416 to LW431 vary between a minimum of 290 m and a maximum of 420 m, while LW432 and LW501 to LW503 depths of cover varies between a minimum of 180 m and a maximum of 400 m.

The longwall panel dimensions have been optimised based on experience from Springvale Mine’s existing mining operations in addition to numerical subsidence predictions and impact assessment models. The proposed panel widths are equal to or less than 261 m, similar to previously extracted longwalls (LW1, LW401 – LW409) at Springvale Mine (Section 3.1.4). LW416 – 432 with these void widths fall in the sub-critical zone and are predicted to have the effect of increasing underground stability and significantly reducing the risk of environmental impacts upon natural surface features such as swamps. The predictions are based upon the significant research that has been undertaken on previous longwalls at Springvale Mine and Angus Place Colliery, and across the Western Coalfields (Chapter 8.0) and supported by subsidence predictions for the proposed mining areas (MSEC 2013).

4.6.2 Mining Sequence

On approval, longwall mining will continue to the east, as approved in DA 11/92, progressing sequentially from LW416 to LW423. Panels LW424 to LW432 and LW501 to LW503 will be extracted following the completion of the northern area (Figure 4.2).

4.7 Coal Handling, Processing, Stockpiles and Transport

There will be no change to coal handling and stockpiling at Springvale pit top, which will be undertaken as described in Section 3.7. No change to the stockpile area at the pit top is proposed.

The existing drift conveyor will continue to transport ROM coal from the underground to the surface for temporary stockpiling at the pit top prior to transfer into the crusher and screening plant. ROM coal will continue to be relayed to the overland conveyor system after crushing and sizing. The overland conveyor system will continue to deliver coal directly to Mount Piper Power Station or Wallerawang Power Station, or to the Springvale Coal Services Site for stockpiling and processing. However, as noted above, the operational management of both the overland conveyor system, coal stockpiling and processing at the Springvale Coal Services Site will be undertaken as part of the proposed Western Coal Services Project (State Significant Development 12_5579).

Transport of up to 50,000 tonnes per annum of coal to local domestic customers by road haulage from the pit top (Schedule 2 Condition 7(b) of DA 11/92) will be retained as part of the Project. Inert volumes of coal waste comprising ballast and coal reject from underground road maintenance activities will be transported to the Springvale Coal Services Site within this 50,000 tonnes of road haulage. Plant and Equipment

The Project will result in no change to the type of plant and equipment used currently at Springvale Mine. Underground support services (dewatering, ventilation facilities and compressed air supply) and existing conveyor systems will be modified to access the new extraction areas of the Project as appropriate.

4.8 Mine Support Facilities and Underground Access

No change to existing infrastructure and operations associated with Springvale pit top management, pit top access or pit top mine services will occur as part of the Project. New surface infrastructure to support mining in the new areas is proposed on Newnes Plateau. Access to Newnes Plateau infrastructure areas will not change as a result of the Project.

4.8.1 Underground Mine Access

No changes to underground mine access are proposed in the Project. The existing two portals located at the pit top (Section 3.9.1) will continue to be utilised for personnel and materials.
4.8.2 Workshop, Services and Administration Infrastructure

No changes to the workshop, services and administration infrastructure at the pit top are proposed. Infrastructure described in Section 3.9.2 will continue to be utilised.

4.9 Infrastructure

4.9.1 Water Management Infrastructure

The existing surface water management systems comprising clean and dirty water flows paths and storages, described in Section 3.11.2.1, will continue to be utilised and maintained on an ongoing basis. Proposed changes to the sewage system at the pit top have been approved in DA 11/92 Mod4 and discussed in Section 3.11.6. LDP006 and LDP007 will be transferred to the proposed Western Coal Services Project.

The mine dewatering infrastructure located on Newnes Plateau will be extended and upgraded, as described in Section 4.10.

4.9.2 Pollution Control Infrastructure

No changes to the pollution control infrastructure at the pit top described in Section 3.10.2 are proposed in the Project.

4.9.3 Other Infrastructure

No changes to the existing ventilation facilities, both downcast (Ventilation Shafts 1 and 2) and upcast (Ventilation Shaft 3) shafts are proposed in the Project. However, an additional downcast ventilation borehole is proposed to be located at the Bore 10 dewatering facility site. This ventilation borehole will be additional to the four dewatering boreholes that will be installed at the Bore 10 site (refer below).

Mine Services Borehole Compound

An underground logistics review was undertaken for Springvale Mine, which identified that additional mine services boreholes will be required to service the new mining areas proposed to the east and southeast of the existing workings. These boreholes will be located within the mine services borehole compound (Figure 4.1) to be located on Newnes Plateau. The construction of this facility will lead to a reduction in the number of underground vehicle movements and associated diesel use.

The mine services borehole compound will accommodate up to four 500 mm diameter surface to seam boreholes to convey materials such as ballast and concrete to the underground mine. It will be approximately 1 ha in size and consist of a small clearing, a dirty water capture pond to be used during drilling of the boreholes. The compound will be installed with erosion and sediment controls for the management of storm water (dirty water) run-offs from disturbed areas, and separate it from clean water through use of diversion bunds, during both the construction and operational phase.

A shed, housing a telephone and concreting equipment, will be permanently installed within the compound. The compound will be fenced and locked at all times to ensure public safety and security.

Pit Top Collection System

No changes to the pit top collection system, used to pump groundwater from the existing and old Renown Colliery workings for operational requirements (Section 3.11.3) are proposed in the Project.

Springvale Delta Water Transfer Scheme and Bore Dewatering Facilities

The Project will continue to utilise the SDWTS. Two changes are proposed to the existing SDWTS as follows:

- Extension of the existing scheme to the proposed Bores 9 and 10 dewatering facilities to be established on Newnes Plateau (Figure 4.1). These dewatering facilities are required to be established to facilitate the progress of coal extraction further to the east, the southeast and the southwest of the existing workings to ensure water levels underground are kept at safe and manageable levels. The locations of
these bore sites are controlled by the proposed mine plan and the coal seam floor contours. The bores are located at the lowest point in the mine relative to longwalls they will dewater.

- Duplication of the existing scheme at sections shown in Figure 4.1 to a maximum capacity of 50 ML/day to allow for the management of mine inflows from both Springvale Mine and Angus Place Colliery.

Two new dewatering facilities are proposed to be established in the Project on Newnes Plateau. Bore 9 and Bore 10 will be installed sequentially as mining progresses to the east and then the southeast of the existing workings. Bore 9, will be established when the current dewatering facility (Bore 8) will no longer function effectively. Bore 9 will manage mine inflows from LW420 to LW423. Bore 10 will manage mine inflows from LW424 – LW432 and LW501 – LW503.

The timing of the construction, operation and rehabilitation of Bore 9 and Bore 10 will be staged and contingent upon the progression of underground workings. However, Bore 9 is currently anticipated to be constructed in July 2016 and Bore 10 in April 2018 with each estimated to have a 6 month construction timeframe. Bore 9 will be decommissioned when Bore 10 has been commissioned.

A concept plan for a typical bore site is illustrated in Figure 4.3. Four boreholes founded on concrete pads and equipped with submersible pumps will extend from the surface to below the Lithgow Coal Seam. The bore site will have a cuttings sump and ancillary surface electrical control equipment. Each site will be installed with erosion and sediment controls, and water management structures to separate dirty water runoff from clean water to minimise pollution of receiving waters. The construction footprint of each bore facility will be 1 ha. A 20 metre Asset Protection Zone will be established around each facility. Each bore site will be fenced with a lockable gate for public safety and security.

The existing SDWTS will be extended to both Bore 9 and Bore 10 sites. The extension will comprise the installation of trenched pipelines within dedicated infrastructure corridors of 10 m widths established along existing tracks or new sections of tracks. The extensions to both bore sites will involve installation of approximately 6.5 kilometres of pipes within the infrastructure corridors. The new pipelines will connect to the existing network at the point where the SDWTS extension to the Bore 8 facility exists, in the vicinity of Sunnyside Ridge Road and Maiyingu Marragu Trail intersection.

The infrastructure corridors will also be installed with 11 kV power cables, originating from the existing substation 4, to supply power to the bore sites, and will involve trenching of approximately 5.1 kilometres of power cables. Following the trenching of the pipelines and power cables, the infrastructure corridor will be rehabilitated to create approximately 5 m wide access tracks to the respective drill pad areas to allow vehicular access during operations.

The hydrogeological model (CSIRO, 2013) developed for Springvale Mine and Angus Place Colliery predicts increased mine water make associated with the proposed longwalls both in this Project and in the Angus Place Mine Extension Project. The cumulative predicted water make from both mines will exceed the current capacity of the SDWTS (30 ML/day) and for this reason the capacity of the SDWTS will be increased, through a duplication of the existing pipeline network at sections marked in Figure 4.1 (extending to the LDP009 location) to a maximum capacity of 50 ML/day. As noted previously in Section 3.10.3 the SDWTS from the LDP009 location to the Wallerawang Power Station already has a 58 ML/day transfer capacity. The approximate length of the duplication section of the SDWTS is approximately 6.8 kilometres.

Similar to the extensions of the trenched pipelines to Bore 9 and Bore 10, the new sections of the pipeline forming part of the SDWTS duplication activity will be buried within a 10 m infrastructure corridor to be established adjacent to either existing pipeline and access tracks as available (Figure 4.1) or within infrastructure corridors to be established at previously undisturbed areas. Pipes of 710 mm diameter will be used to provide the required water transfer capacity. Following the trenching of the pipeline, the infrastructure corridor will be rehabilitated to create approximately 5 m wide access tracks.
4.9.4 Non-mine Owned Infrastructure

The Project will continue to utilise additional non-mine infrastructure within and surrounding the Project Application Area. These will include overhead powerlines (11 kV and 66 kV), telecommunications towers, the external road network and access track networks within Newnes State Forest.

Existing access tracks to the Bores 9 and 10 locations will be upgraded to final approximately 5 m width to allow vehicular access to the respective bore sites.

4.10 Water Management

The overall configuration of water management at the pit top, as shown Figure 3.8, will not be modified by the Project. The management of all water elements, comprising process, clean and dirty water, potable and waste water management will continue to be undertaken in accordance with the Site Water Management System.

Modifications to underground water management associated with the Project are limited to management of predicted increases in mine water make.

Surface water management of the Springvale Coal Services Site will not be undertaken as part of this Project. It will be undertaken by the Western Coal Services Project.
Figure 4.3: Dewatering Facility Concept Plan

LEGEND
- Dewatering Borehole
- Construction Footprint
- Asset Protection Zone
- Final Footprint

DATE: 17/11/2013
SEAM: LITHGOW
REFERENCE: 127623060-R-F009
SCALE: 1:800

SYDNEY
LITHGOW
NEWCASTLE
4.10.1 Licensed Discharge Points

The Project will retain the following licensed discharge points: LDP001, LDP002, LDP004, LDP005, LDP009, LDP010 within EPL 3607. However, it is proposed that LDP004 and LDP005, the existing licensed emergency discharge points on Newnes Plateau (Section 3.11.1), will be relinquished post-approval when infrastructure required to redirect emergency discharge water from the SDWTS back underground to the Angus Place Colliery’s 900 water storage area has been installed (refer Section 4.11.3).

LDP006 and LDP007 will in effect be “transferred” to the proposed Western Coal Services Project. No new LDPs are proposed.

4.10.2 Surface Water Management

No changes are proposed in the surface water management at the pit top. Clean and dirty water will continue to be managed as described in Section 3.11.2. Process water for surface and underground operational requirements will continue to be sourced from the existing Springvale Mine and the Old Renown Colliery workings and stored in the Fire Dam prior to use. Mine water will continue to be pumped into the Emergency Holding Dam at the Ventilation Shaft 3 Facility site for fire-fighting purposes.

4.10.3 Underground Water Management

The existing water underground management infrastructure will continue to be utilised in the Project. However, modifications will be undertaken as appropriate to manage mine inflows from the new proposed mining areas. For LW416 – LW419 mine inflows, following treatment comprising de-silting, will be pumped to the surface and into the SDWTS via the Bore 8 dewatering facility. For LW420 – LW423 the mine inflows will be pumped into the SDWTS via the proposed Bore 9 dewatering facility while mine inflows from LW424 – LW432 and LW501 – LW503 will be managed by the Bore 10 dewatering facility.

Springvale Mine (in conjunction with Angus Place Colliery) has developed a life of mine water management strategy that will collectively manage mine inflows from the two mines. It essentially comprises direct transfer of the mine inflows from the workings into the SDWTS via the dewatering sites. From the SDWTS the fed water will be managed by a combination of discharges through LDP009, and/or transfer to Wallerawang Power Station via the SDWTS. Transfer of water to Wallerawang Power Station up to a maximum of 30 ML/day will take precedence over discharges into Coxs River at LDP009.

If Wallerawang Power Station is unable to take any water then the entire mine inflows fed into the SDWTS (from both Springvale Mine and Angus Place Colliery) is proposed to be discharged on a continuous basis into Coxs River via LDP009. The maximum mine inflows proposed to be discharged into Coxs River is approximately 43.8 ML/day in year 2023 which corresponds to the year of maximum water make from both mines (Figure 10.11). This maximum mine inflows will increase gradually, and given that the existing capacity of the SDWTS will be exceeded, the SDWTS duplication to increase the capacity of the scheme to 50 ML/day will require to have been undertaken by this time (refer Section 4.10.3).

When the predicted water make exceeds 30 ML/day, and when Wallerawang Power Station is able to take the maximum 30 ML/day, then the balance of the water make (in excess of 30 ML/day, refer Figure 10.11) will be discharged on a continuous basis into Coxs River via LDP009.

In the event that the Angus Place Mine Extension Project is not approved management of mine inflows from Springvale Mine will only require to be managed via the SDWTS and this will be undertaken as described above. However, the duplication of the SDWTS to increase the capacity of the scheme to 50 ML/day will not be undertaken as the peak mine inflows from Springvale Mine only predicted in 2022 is approximately 19 ML/day (refer Section 10.2.3.1 and Figure 10.11) and this water make can be managed using the existing SDWTS capacity of 30 ML/day.

No emergency discharges on Newnes Plateau via the existing LDP004 and LDP005 is proposed in the Project. The Project will instead redirect emergency mine inflows from the SDWTS underground into the Angus Place Colliery’s 900 water storage area via the existing Angus Place 940 Bore facility. Underground
in-seam pumping infrastructure from the 940 Bore location will require to be constructed to allow this redirection of the mine inflows.

Underground water from the existing workings and Renown Colliery workings will continue to be pumped to the surface via the pit top collection system to meet operational requirements, both for underground operations and surface facilities.

4.10.4 Site Water Requirements – Proposed

A site water balance assessment to quantify the surface and groundwater budgets for the Project is summarised in Table 4.2.

The water balance model was simulated over the predicted life of mine including both existing and proposed conditions, and considers operations at the adjacent Angus Place Colliery and transfer to the SDWTS. Results for the proposed case for the year 2022 were used as this corresponds to the point in time when combined water make from Angus Place Colliery and Springvale Mine is predicted to be at a maximum.

The Project will be running a net surplus of water even during dry years.

<table>
<thead>
<tr>
<th>Facility Usage</th>
<th>Annual Value (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop</td>
<td>30</td>
</tr>
<tr>
<td>Vehicle washdown</td>
<td>30</td>
</tr>
<tr>
<td>Bath House and Administration Building (portable water)</td>
<td>10</td>
</tr>
<tr>
<td>Process water (underground operations, screening and crushing plant)</td>
<td>279</td>
</tr>
<tr>
<td>Total</td>
<td>349</td>
</tr>
</tbody>
</table>

4.10.5 Potable Water

Potable water will continue to be sourced from Lithgow City Council for bathhouse and administration buildings. Additional drinking water for employees will continue to be sourced from a local commercial drinking water supplier.

4.10.6 Wastewater Collection and Treatment

Sewage and grey water at the pit top area are currently treated in an on-site sewage plant, with treated effluent pumped via LDP002 to a sprinkler system in a 4 ha onsite utilisation area. As part of a recent modification approval (DA11/92 Mod 4) the existing on-site effluent management system will be bypassed and the sewage will be pumped directly into the Lithgow City Council sewer main at the intersection of Wolgan Road and Duncan Street in Lidsdale (Section 3.11.6). The Project is not seeking any further change and will make use of the existing on-site system, until such time the new sewer connection becomes operational.

4.11 Waste Management

Production Waste

No production waste comprising reject materials from ROM coal processing (washing) will arise from the Project. However, volumes of coal waste comprising ballast and coal reject from underground road maintenance activities will be generated by the Project. This material will be disposed at the REAs within the Springvale Coal Services Site. The materials will be transported from the Springvale pit top to the Springvale Coal Services Site using road haulage. The transport of coal waste from the pit top to Springvale Coal Services Site by road has been assessed as part of the Project's proposal to retain the transport of up
to 50,000 tonnes per annum of coal to local domestic customers by road haulage from the pit top (Section 4.7).

Non-Production Waste
Non-production waste generated at the pit top, and existing and new infrastructure areas on Newnes Plateau will continue to be managed as described in Section 3.12.

4.12 Environmental Management
Springvale Mine will continue to undertake environmental management and monitoring as described in Section 3.13 and in accordance with the following.

- Springvale Mine’s EMS comprising Springvale Mine Environmental Management Plans, listed in Table 3.7, following a review and updating of the plans, as appropriate. The review will take into consideration the environmental assessments undertaken as part of this EIS, the commitments made in this EIS and all relevant consent conditions.
- Centennial Environmental Policy.

Springvale Mine will undertake monitoring and reporting in accordance with an updated environmental monitoring network, monitoring noise, dust, groundwater, surface water and subsidence. Monitoring results will continue to be reported monthly on Centennial’s website and on an annual basis in an Annual Review.

4.13 Rehabilitation and Final Landform

4.13.1 Progressive Rehabilitation
The approved MOP details the proposed rehabilitation objectives to ensure the final landform is commensurate with the surrounding topography and relevant zoning requirements of the time. These are further detailed specific to the Project in the “Decommissioning and Rehabilitation Strategy” (Appendix P and Section 10.11).

The new infrastructure components of the Project will require rehabilitation as a result of surface disturbance during construction. The progressive approach to rehabilitation as outlined in Section 3.14 (and Appendix P) will continue to be applied. The success of existing and future rehabilitation will be monitored against appropriate performance indicators identified within the Decommissioning and Rehabilitation Strategy developed for the Project (Appendix P) and relevant legislative requirements.

Where appropriate the rehabilitation strategy will prioritise native vegetation integration with undisturbed native vegetation to provide consolidated areas and wildlife corridors, which will enable the Newnes State Forest to return to the end land use of grassland and woodland in agreement with the landholder of the Forestry Corporation of NSW.

Regular monitoring of the rehabilitated areas will occur during the initial vegetation establishment period and beyond, to ensure the objectives of the Rehabilitation Strategy are being achieved. Further detail on life-of-mine and rehabilitation is provided in Section 10.11.

4.13.2 Life of Mine Rehabilitation
On cessation of all mining activities the disturbance areas will be fully rehabilitated to create stable and self-sustaining landform for the nominated end land uses of woodland (Newnes Plateau) and grassland (Springvale pit top). The creation of the proposed final landforms will ensure they are commensurate with the surrounding topography and relevant zoning requirements of the time.

The decommissioning and rehabilitation strategy at the end of life of mine is discussed in detail in Section 10.11.
CHAPTER 5.0
Planning Considerations
5.0 PLANNING CONSIDERATIONS

The Springvale Mine Extension Project has been assessed with full consideration of the applicable legislative requirements of the Commonwealth and State, along with the local planning and environmental frameworks of the Lithgow LGA, where applicable. This section describes the relevant regulatory framework and the application to the Project.

5.1 Approval Pathway and Permissibility

The development assessment and approval system in NSW is set out in Parts 4 and 5 of the EP&A Act. Division 4.1 in Part 4 provides for the assessment and determination of State significant development (SSD). Pursuant to Section 89C of the EP&A Act, projects are classified as SSD if they are declared to be such by the SEPP (State and Regional Development) 2011 (SRD SEPP). Schedule 1 of the SRD SEPP identifies development for the purpose of coal mining as SSD, and as outlined in Section 5.5, the Project is permissible with development consent. As a result, pursuant to clause 8(1) of the SRD SEPP, the Project comprises SSD.

The Minister for Planning and Infrastructure (or his delegate) determines development applications for SSD under Part 4 of the EP&A Act. The Minister has delegated his consent authority function to the NSW Planning Assessment Commission for development applications made by private proponents for SSD.

A Project Briefing Paper was submitted to the DP&I, along with various other State and local government agencies, in September 2012 seeking the DGRs for the form and content of the EIS to accompany the development application. The DGRs were issued by the DP&I on 6 November 2012 outlining the general requirements and key issues to be addressed within the EIS.

An EPBC Act referral was made to the Federal Minister of the Environment on 20 May 2013 (Reference: EPBC 2013/6881) and was declared a controlled action under the Act on 7 July 2013. The Federal Minister’s delegate determined that the Project will be assessed by the accredited assessment under the EP&A Act. The Supplementary DGRs for the Project in relation to EPBC 2013/6881 was issued by the Director-General under section 78A(8A) of the EP&A Act on 30 August 2013.

The DGRs, the Supplementary DGRs, and the input received from other consulted government agencies are contained within Appendix A and summarised in Section 1.6 and Chapter 7.0.

5.2 Commonwealth Legislation

5.2.1 Environment Protection and Biodiversity Conservation Act 1999

The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) is administered by the Commonwealth Department of Sustainability, Environment, Water, Population and Communities (SEWPaC, now DoE) and provides a legal framework to protect and manage nationally important flora, fauna, ecological communities and heritage places defined as matters of ‘national environmental significance’ (NES). An action that “has, will have or is likely to have a significant impact on a matter of National Environmental Significance” may not be undertaken without prior approval from the Commonwealth Minister, as provided under Part 9 of the EPBC Act. Approval under the EPBC Act is also required where actions are proposed on, or will affect, Commonwealth land and its environment.

An assessment of whether the Springvale Mine Extension Project may have a significant impact on any matters of NES or on the environment of Commonwealth land was undertaken during the EIS investigations and preparation. Specifically, RPS, conducted an on-line search of the EPBC Act Protected Matters Search Database (accessed in March 2013) to generate a list of those matters of NES within a 10 kilometre radius of the Project Application Area. RPS used this data, together with other local knowledge and records, to assess whether the Project will have, or is likely to have, a significant impact upon matters of NES or on the environment of Commonwealth land.
The Flora and Fauna Assessment Report concluded that the Springvale Mine Extension Project has the potential to have a significant impact on any matters of national environmental significance listed under the EPBC Act. For this reason a referral to the DoE (former) SEWPAC was made (Section 5.1).

5.2.2 Native Title Act 1993

The Native Title Act 1993 recognises that Aboriginal people may have rights and interests to certain land and waters which derive from their traditional laws and customs. Native title may be recognised in places where Indigenous people continue to follow their traditional laws and customs and have maintained a link with their traditional country. Most of the lands within the Project Application Areas are subject to an Ancillary Deed which was entered into on the 31 January 2003 by the Gundungurra Native Title Claim Group, the Gundungurra Tribal Council Aboriginal Corporation and Centennial Springvale Pty Ltd, Springvale SK Kores Pty Ltd, Coalex Pty Ltd, Centennial Coal Company Ltd, Centennial Angus Place Pty Ltd and Ivanhoe Coal Pty Ltd. As such, these Centennial Companies are bound by the terms of this Deed.

The Deed is subject to a confidentiality clause and as such detailed commentary regarding the Deed is not provided in this document.

Any Native Title matters that are not dealt with within the existing Ancillary Deed are required to be resolved prior to the grant of a new the mining lease required for the Project.

5.2.3 National Greenhouse and Energy Reporting Act 2007

The National Greenhouse and Energy Reporting Act 2007 (NGER Act) provides a single national framework for the reporting and dissemination of information about the greenhouse gas emissions, greenhouse gas projects, and energy use and production of corporations. It makes registration and reporting mandatory for corporations whose energy production, energy use or greenhouse gas emissions meet specified thresholds. Centennial reports emissions from the corporation on an annual basis, including those from the Springvale Mine, in accordance with the NGER Act.

5.3 NSW State Legislation

5.3.1 Environmental Planning and Assessment Act 1979

Objects of the EP&A Act

The EP&A Act is the principal piece of legislation overseeing the assessment and determination of development proposals in NSW. It aims to encourage the proper management, development and conservation of resources, environmental protection and ecologically sustainable development.

The objects of the EP&A Act generally seek to promote management and conservation of natural and artificial resources, while also permitting appropriate development to occur. The principles of ecologically sustainable development and public participation are also objects of the EP&A Act. The consistency of the Project with these objects is summarised in Table 5.1.
Table 5.1 Objectives of the EP&A Act

<table>
<thead>
<tr>
<th>Objects of the EP&A Act</th>
<th>Consistency of the Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>To encourage:</td>
<td>disinfectant consultants have been engaged to assess and report on the potential for the Project to impact upon the natural and artificial resources within the vicinity of the Project Application Area. Notably:</td>
</tr>
<tr>
<td>- the proper management, development and conservation of natural and artificial resources, including agricultural land, natural areas, forests, minerals, water, cities, towns and villages for the purpose of promoting the social and economic welfare of the community and a better environment</td>
<td>• The impacts on the natural environment have been addressed within Sections 10.1, 10.3, 10.10 and 10.11.</td>
</tr>
<tr>
<td>- the promotion and co-ordination of the orderly and economic use and development of land</td>
<td>• The impacts on agricultural land have been addressed within Section 10.9.</td>
</tr>
<tr>
<td>- the protection, provision and co-ordination of communication and utility services</td>
<td>• The social and economic implications have been addressed within Chapter 6.0.</td>
</tr>
<tr>
<td>- the provision of land for public purposes</td>
<td></td>
</tr>
<tr>
<td>- the provision and co-ordination of community services and facilities, and</td>
<td></td>
</tr>
<tr>
<td>- the protection of the environment, including the protection and conservation of native animals and plants, including threatened species, populations and ecological communities, and their habitats, and</td>
<td>The orderly and economic use of land is served by development which is permissible under the relevant planning regime and predominantly in accordance with the prevailing planning controls. The Project comprises a permissible development which is consistent with the statutory and strategic planning controls. As detailed in this EIS, the proposal will result in positive economic impacts, with appropriate mitigation measures and management strategy being proposed to reduce adverse environmental impacts.</td>
</tr>
<tr>
<td>- ecologically sustainable development, and</td>
<td></td>
</tr>
<tr>
<td>- the provision and maintenance of affordable housing, and</td>
<td></td>
</tr>
<tr>
<td>- to promote the sharing of the responsibility for environmental planning between the different levels of government in the State, and</td>
<td>The proposal is consistent with the principles of ecological sustainable development as outlined in Chapter 12. Justification and Conclusion, addressing both this object of the EP&A Act and clause 7(1)(f) in Schedule 2 of the EP&A Regulation.</td>
</tr>
<tr>
<td>- to provide increased opportunity for public involvement and participation in environmental planning and assessment</td>
<td>As outlined in Section 5.1, the SSD Project is subject to the provisions of Part 4 of the EP&A Act, where the Minister for Planning and Infrastructure is the consent authority.</td>
</tr>
<tr>
<td></td>
<td>As outlined in Chapter 7, Springvale Coal has undertaken significant consultation in relation to the Project with government agencies, the local community and other stakeholders. This consultation process is continuing with respect to the progression towards obtaining development consent and a mining lease for the Project. Any relevant public representations will need to be considered by the DP&I.</td>
</tr>
</tbody>
</table>
Section 79C Evaluation
Section 79C of the EP&A Act applies to the determination of development applications for SSD. In determining the Project, the consent authority is required to consider the matters listed in Section 79C(1) of the EP&A Act as are of relevance to the development. Each of the relevant matters has been addressed in the EIS and will need to be considered by the consent authority during the assessment of the Project.

Other Approvals
Pursuant to Section 89J of the EP&A Act, the following authorisations are not required for approved SSD proposals:

- The concurrence under Part 3 of the Coastal Protection Act 1979 of the Minister administering that Part of the Act;
- A permit under section 201, 205 or 219 of the Fisheries Management Act 1994;
- An approval under Part 4, or an excavation permit under section 139, of the Heritage Act 1977;
- An Aboriginal heritage impact permit under section 90 of the National Parks and Wildlife Act 1974;
- An authorisation referred to in section 12 of the Native Vegetation Act 2003 (or under any Act to be repealed by that Act) to clear native vegetation or State protected land;
- A bushfire safety authority under section 100B of the Rural Fires Act 1997;
- A water use approval under section 89, a water management work approval under section 90 or an activity approval (other than an aquifer interference approval) under section 91 of the Water Management Act 2000; and
- An order under Division 8 of Part 6 of the Heritage Act 1977 restricting harm to buildings, works or relics that are not protected by a heritage listing.

Pursuant to Clause 89K of the EP&A Act, an authorisation of the following kind cannot be refused if it is necessary for carrying out an approved SSD proposal, and must be granted "substantially consistent" with the SSD consent:

- An aquaculture permit under section 144 of the Fisheries Management Act 1994;
- An approval under section 15 of the Mine Subsidence Compensation Act 1961;
- A mining lease under the Mining Act 1992;
- A production lease under the Petroleum (Onshore) Act 1991;
- An environment protection licence under Chapter 3 of the Protection of the Environment Operations Act 1997 (for any of the purposes referred to in section 43 of that Act);
- A consent under section 138 of the Roads Act 1993; and
- A licence under the Pipelines Act 1967.

The need to obtain any of the above approvals for the Project is outlined in Section 5.3.2.
5.3.2 Other Key NSW State Legislation

The existing approvals relevant to the Project are described in Section 3.1. In addition to the requirement for development consent under Part 4 of the EP&A Act, the Springvale Mine Extension Project will require approvals, licenses and/or authorities under various other pieces of NSW State legislation. Table 5.2 lists the key relevant pieces of NSW State legislation and indicates the implications, if any, for the Project.

Table 5.2 Relevant NSW State Legislation

<table>
<thead>
<tr>
<th>NSW State Legislative Act</th>
<th>Project Implications (approvals, licences and/or authorities)</th>
</tr>
</thead>
</table>
| **Protection of the Environment Operations Act 1997** (POEO Act) | Springvale Mine is a premises-based "scheduled activity" under Schedule 1 of the POEO Act and currently operates under the provisions of EPL 3607.
The Project will operate under an EPL, which will include Licensed Discharge Points 002, 004, 005, 009, and 010 as discussed in Section 4.11.1.
Under the POEO Act, the regulatory authority is required to consider the matters listed in section 45 of the Act. The regulatory authority is required to take into consideration the following matters as are of relevance:
- Any protection of the environment policies;
- The objectives of the EPA as referred to in section 6 of the Protection of the Environment Administration Act 1991;
- The pollution caused or likely to be caused by the carrying out of the activity or work concerned and the likely impact of that pollution on the environment;
- The practical measures that could be taken to prevent, control, abate or mitigate the pollution and to protect the environment from harm as a result of the pollution;
- The environmental values of water affected by the activity or work, and the practical measures that could be taken to restore or maintain those values;
- Any guidelines issued by the EPA to the authority. |
| **Mining Act 1992** | To permit the extraction of coal within the Project Application Area a new mining lease will be required over the Project Application Area under the Mining Act 1992. It is expected that the conditions of the new mining lease and SSD consent will require a new Mining Operations Plan (MOP) and Extraction Plan to be prepared and approved for the Project. |
| **Water Act 1912** | The Water Act 1912 governs access, trading and allocation of licences associated with surface water and groundwater sources where a Water Sharing Plan is not in place. Springvale Mine holds Groundwater Licences 10BL603519, 10BL602017 and 10BL601863.
Springvale Mine holds groundwater monitoring licences approved under the Water Management Act 1912 for a series of shallow and deep groundwater monitoring piezometers.
Appendix E lists the groundwater and surface water licensing required for the Project under the WM Act as a result of the Project.
By the operation of Section 89J of the EP&A Act, the Project will not require water use approvals under Section 89 of the WM Act, water management approvals under Section 90 or a controlled activity approval under Section 91. However, it may require an aquifer interference approval under Section 91 of the WM Act. |
Coal Mine Health and Safety Act 2002 (CMH&S Act)

Springvale Coal currently holds all necessary approvals under the Coal Mine Health & Safety Act 2002, which aims to assist in securing and promoting the health, safety and welfare of people at work at coal operations. Gas drainage and management at Springvale Mine will continue to be regulated under the provisions of the Act.

Mine Subsidence Compensation Act 1961

The Project Application Area is not located within a Mine Subsidence District. Surface improvements will not require approval by the Mine Subsidence Board prior to construction.

Dams Safety Act 1978

The Project does not propose any underground mining or surface disturbance on or in the vicinity of any dams prescribed under the Dam Safety Act 1978.

Crown Lands Act 1989

There is Crown land within the Project Application Area. The Project will not require a licence to use Crown Land under the provisions of the Crown Lands Act 1989.

Roads Act 1993

Section 138 of the Roads Act 1993 requires consent be obtained prior to disturbing or undertaking work in, on or over a public road. The Project proposes limited widening of public roads within the Newnes State Forest. By operation of Clause 89K of the EP&A Act, consent under Section 138 of the Roads Act 1993 cannot be refused if it is necessary for carrying out an approved SSD proposal, and must be granted substantially consistent with the SSD consent.

Threatened Species Conservation Act 1995 (TSC Act)

The TSC Act provides protection for threatened plants and animals native to NSW excluding fish and marine vegetation) and integrates the conservation of threatened species into development control processes under the EP&A Act (Appendix H and Section 10.3).

National Parks and Wildlife Act 1974 (NPW Act)

The NPW Act contains provisions for the protection and management of national parks, historic sites, nature reserves and Aboriginal heritage. By operation of Section 89J of the EP&A Act, the Project does not require any additional approvals under the NPW Act An Aboriginal Heritage Assessment is provided in Section 10.4 and the management of sites is detailed in Section 10.4.6.

Aboriginal Land Rights Act 1983

The Aboriginal Land Rights Act 1983 provides for the constitution of local, regional and State Aboriginal Land Councils and a mechanism for Land Councils to claim Crown land. There are no known granted claims over Crown land in the Project Application Area.

Heritage Act 1977

Historical archaeological relics, buildings, structures, archaeological deposits and features are protected under the Heritage Act 1977. There are no heritage items in the Project Application Area within the World Heritage List, NSW Heritage Register, Australian Heritage Database or the relevant Local Environmental Plans (RPS, 2013b). In any event, Approval is not required under Part 4 of the Heritage Act 1977 due to the operation of Section 89J of the EP&A Act.

Contaminated Land Management Act 1997

The relevance of this legislation to the Project is outlined in Section 5.4.4.

Forestry Act 2012

Access permits will be required to allow access to surface infrastructure sites in the Newnes State Forest.
5.4 State Environmental Planning Policies

State Environmental Planning Policies (SEPPs) are Environmental Planning Instruments (EPIs) prepared by the Minister to address issues significant to NSW. The SEPPs outlined in the below sub-sections contain provisions that are relevant to the Springvale Extension Mine Project and therefore are matters to be taken into consideration by the consent authority.

5.4.1 SEPP (State and Regional Development) 2011

SEPP (State and Regional Development) 2011 (SRD SEPP) came into effect upon the repeal of Part 3A of the EP&A Act and identifies development to which the SSD assessment and determination process under Division 4.1 in Part 4 of the EP&A Act applies. The relevance of the SRD SEPP for the purposes of the Project is outlined in Section 5.1.

5.4.2 SEPP (Mining, Petroleum Production and Extractive Industries) 2007

SEPP (Mining, Petroleum Production and Extractive Industries) 2007 (Mining SEPP) aims to provide for the proper management and development of mineral, petroleum and extractive material resources for the social and economic welfare of NSW. Section 5.5 discusses the permissibility of the Project due to the application of clauses 7(1)(a) and 5(3) of the Mining SEPP.

Part 3 of the Mining SEPP stipulates matters for consideration by the consent authority before determining an application for consent in respect of development for the purposes of mining. Specifically, Clauses 12 to 17 (inclusive) requires consideration to be given to the significance of the resource, the compatibility of projects with other surrounding land uses, including the existing and potential extraction of minerals, natural resource management and environmental management, resource recovery, transportation and rehabilitation.

The information presented in this EIS addresses each of the matters for consideration prescribed in the abovementioned clauses, and the assessment undertaken has been multi-disciplinary and involved consultation with various government agencies and stakeholders. Emphasis has been placed on anticipation and prevention of potential environmental and social impacts, with various mitigation measures, management strategies, and monitoring activities proposed to minimise adverse impacts.

5.4.3 SEPP (Infrastructure) 2007

SEPP (Infrastructure) 2007 (Infrastructure SEPP) aims to facilitate the effective delivery of infrastructure across NSW by improving regulatory certainty and efficiency through a consistent planning regime and greater flexibility in the location of infrastructure and service facilities.

Clause 45 of the Infrastructure SEPP provides that for a development application in respect of development carried out:

- within or immediately adjacent to an easement for electricity purposes (whether or not the electricity infrastructure exists); or
- immediately adjacent to an electricity substation; or
- within 5 m of an exposed overhead electricity power line; and
- The consent authority must give written notice to the electricity supply authority for the area and invite comments about potential safety risks, and take into consideration any response to that notice received within 21 days after the notice is given.

This EIS assesses the Project's impact on relevant electricity transmission lines and describes the consultation that has been undertaken to date in respect of the Project.
5.4.4 SEPP No. 55 – Remediation of Land

SEPP No. 55 – Remediation of Land (SEPP 55) provides for a state-wide planning approach to the remediation of contaminated land in order to reduce the risk to human health or any other aspect of the environment.

Clause 7(1) of SEPP 55 provides that a consent authority must not consent to the carrying out of any development on land unless:

- it has considered whether the land is contaminated;
- if the land is contaminated, it is satisfied that the land is suitable in its contaminated state (or will be suitable, after remediation) for the purpose for which the development is proposed to be carried out; and
- if the land requires remediation to be made suitable for the purpose for which the development is proposed to be carried out, it is satisfied that the land will be remediated before the land is used for that purpose.

Further, clause 7(2) of SEPP 55 provides that before determining an application for consent to carry out development that would involve a “change of use” in respect of certain land specified in clause 7(4) of SEPP 55, the consent authority must consider a report specifying the findings of a preliminary investigation of the land concerned carried out in accordance with the contaminated land planning guidelines (being the 1998 publication Managing Land Contamination: Planning Guidelines SEPP 55 – Remediation of Land).

Centennial Coal undertook a contaminated site assessment across all its sites including Springvale Mine in accordance with the Contaminated Land Management Act 1997 to determine whether any site triggered the Duty to Report criteria. A three phase approach was adopted as follows:

- Phase 1 desk top assessment completed in December 2010;
- Phase 2 intrusive sampling and analysis programme, completed in February 2012; and
- Phase 3 implementation of remediation plans.

In February 2012, Centennial Coal notified the then DECCW of the contamination status of Springvale Mine on the basis that there was visible evidence of limited soil contamination but that some potential existed for contamination associated with an underground diesel storage tank, equipment washdown area and workshop. Springvale Mine was categorised as a medium priority for Phase 2 investigations.

The area above the proposed longwalls in the Project has not been used for industrial purposes, and so the potential for contamination in these areas is significantly lower. Construction and operation of the surface facilities in the Newnes State Forest will involve the storage and handling of hydrocarbon fuels, and to reduce the potential for contamination, all pipework and tanks will be constructed to Australian Standard AS 1692. Refuelling of mobile equipment during construction will be via mobile tankers, equipped with spill kits.

Springvale Coal will implement best management practices for hydrocarbons, along with the approved EMS and occupation health and safety management systems to ensure the potential for contamination and associated issues remains low.

5.4.5 SEPP No. 44 – Koala Habitat Protection

SEPP No. 44 – Koala Habitat Protection provides for the protection of koala habitat by ensuring that areas subject to development proposals are considered for their value as habitat or potential habitat for koalas. The Greater Lithgow LGA is listed under Schedule 1 of SEPP No. 44 as an area to which the SEPP applies. The Project Application Area contains core koala habitat (Appendix H).
5.4.6 SEPP No. 33 – Hazardous and Offensive Development

SEPP No. 33 - Hazardous and Offensive Development (SEPP 33) regulates, amongst other things, the determination of development applications to carry out what is defined in SEPP 33 as development for the purposes of a "potentially hazardous industry" or "potentially offensive industry". With the continued implementation of best management practices for hydrocarbons and explosives used within the Project Application Area and the other measures outlined in this EIS to reduce or minimise the impact of the Project, as well as effective implementation of the approved EMS and occupation health and safety management systems, the Project would not pose any significant risk, in relation to its locality, to human health, life or property or to the biophysical environment.

Further, by employing the management and mitigation measures outlined in this EIS during the Project's operation, the Project would not result in the emission of a polluting discharge in a manner which would have a significant adverse impact in its locality or on the existing or likely future development on other land.

On the above bases, the Project is not considered to comprise a "potentially hazardous industry" or a "potentially offensive industry" within the meaning of these expressions in SEPP 33, and therefore a preliminary hazard analysis was not prepared as required by clause 12 of SEPP 33 and nor does clause 13 of SEPP 33 apply to the consent authority's determination of the Project's development application.

5.4.7 SEPP (Sydney Drinking Water Catchment) 2011

SEPP (Sydney Drinking Water Catchment) 2011 applies to land within the Sydney drinking water catchment. The Project Application Area is partly located within the Sydney drinking water catchment.

The aims of SEPP (Sydney Drinking Water Catchment) 2011 are:

(a) to provide for healthy water catchments that will deliver high quality water while permitting development that is compatible with that goal

(b) to provide that a consent authority must not grant consent to a proposed development unless it is satisfied that the proposed development will have a neutral or beneficial effect on water quality, and

(c) to support the maintenance or achievement of the water quality objectives for the Sydney drinking water catchment.

Clause 9(1) of this SEPP provides that any development or activity proposed to be carried out on land within the Sydney drinking water catchment should incorporate the Sydney Catchment Authority’s current recommended practices and standards. Section 10.2 addresses this. Alternatively, clause 9(2) of this SEPP provides that if such practices and standards are not incorporated, it needs to be demonstrated to the satisfaction of the consent authority how the practices and performance standards proposed to be adopted will achieve outcomes not less than those achieved by the Authority’s current recommended practices and standards. Section 10.2 addresses this.

Clause 10(1) of this SEPP provides that a consent authority must not grant consent to the carrying out of development on land within the Sydney drinking water catchment unless it is satisfied that the carrying out of the proposed development would have a neutral or beneficial effect on water quality. For the purposes of determining whether the carrying out of the proposed development on land in the Sydney drinking water catchment would have a neutral or beneficial effect on water quality, the consent authority must, if the proposed development is one to which the NorBE Tool applies, undertake an assessment using that Tool. The "NorBE Tool" is set out in Appendix 1 of the document titled Neutral or Beneficial Effect on Water Quality Assessment Guideline 2011 prepared by the Sydney Catchment Authority. Appendix E and Appendix F address the "NorBE" test.
5.5 Local Environmental Plans

Local Environmental Plans (LEPs) are instruments that guide planning decisions for LGAs and allow Councils to manage the ways in which land is used through zoning and development consents.

5.5.1 Lithgow City Local Environmental Plan 1994

The aims of the Lithgow City Local Environmental Plan 1994 (Lithgow LEP 1994) include the encouragement of the proper management, development and conservation of natural resources and the built environment within the City of Lithgow, by protecting, enhancing or conserving, amongst other things, timber, minerals, soil, water quality, stream environment and other natural resources.

The land use zonings of the Project Application Area pursuant to the Lithgow City LEP are 1(a) Rural (General), Zone No 1(f) Rural (Forestry) and Zone No 2(v) Village (Figure 2.4). Development for the purposes of "mining" is permissible with development consent under the Lithgow LEP 1994 within Zone No 1(f) Rural (Forestry). Mining is not prohibited within Zone 1(a) Rural (General) and Zone No 2(v) Village.

Sub-clause 7(1)(a) of the Mining SEPP (Section 5.4.2) also states that development for the purpose of underground mining may be carried out on any land with development consent. In relation to any inconsistency between the Mining SEPP and an LEP, sub-clause 5(3) provides that the Mining SEPP prevails to the extent of the inconsistency. On this basis, any provision in the Lithgow City LEP that would otherwise operate to prohibit the Project has no effect, and accordingly, the Project is permissible with development consent on the land in which the Project will be carried out that is within the Lithgow LGA.

The Lithgow City LEP notes that the consent authority must not grant consent unless it is of the opinion that the development is consistent with the objectives for the zone in which it is proposed to be carried out (clause 9(2)). The objectives of the Zone 1(a) Rural (General) are to promote the proper management and utilisation of natural resources by:

(a) protecting, enhancing and conserving:

(i) rural land, in particular prime crop and pasture land, in a manner which sustains its efficient and effective agricultural production potential,

(ii) soil, by controlling and locating development in accordance with soil capability,

(iii) forests of existing and potential commercial value for timber production,

(iv) valuable deposits of minerals, coal and extractive materials, by controlling the location of development for other purposes in order to ensure the efficient extraction of those deposits,

(v) trees and other vegetation in environmentally sensitive areas, where the conservation of the vegetation is significant for scenic amenity or natural wildlife habitat or is likely to control land degradation,

(vi) water resources for use in the public interest, preventing the pollution of water supply catchment and major water storages,

(vii) localities of significance for nature conservation, including places with rare plants, wetlands and significant wildlife habitat, and

(viii) items of heritage significance,

(b) preventing the unjustified development of prime crop and pasture land for purposes other than agriculture,

(c) facilitating farm adjustments,

(d) minimising the cost to the community of:
(i) fragmented and isolated development of rural land, and

(ii) providing, extending and maintaining public amenities and services,

(e) providing land for other non-agricultural purposes, in accordance with the need for that development, and

(f) providing for the separation of conflicting land uses.

The objectives of Zone No 1(f) Rural (Forestry) are:

(a) to identify land managed by the Forestry Commission under the Forestry Act 1916,

(b) to preserve existing forests within the City of Lithgow, while allowing compatible development, and

(c) to prevent pollution of water supply catchments and water quality in major water storages;

clause 11 of the Lithgow City LEP provides that before determining a development application within Zone No 1(a) Rural (General), Zone No 1(c) Rural (small holdings) and Zone 1(e) Outer Rural, the consent authority must take into consideration the effect the proposed development would have on:

(a) the present use of the land, and the potential for sustained agricultural production of so much (if any) of the land as is prime crop and pasture land,

(b) vegetation, timber production, land capability and water resources (including the quality of the water, stability of water courses, ground water storage and riparian rights),

(c) the future recovery from known or prospective areas of valuable deposits of minerals, coal, petroleum, sand, gravel or other extractive materials,

(d) the protection of areas of nature conservation significance or of high scenic or recreational value, and of items of heritage significance,

(e) the cost of providing, extending and maintaining public amenities and services,

(f) development on adjoining land and on other land in the locality, including any cumulative impact, and

(g) the future expansion of settlements in the locality.

certain relevant provisions in Parts 3 and 4 of the Lithgow City LEP that operate as controls in respect of the decision-making function of the consent authority, including certain development standards.
The operation of the above provisions in respect of the Project is subject to the application of clause 8 of the Mining SEPP, which provides:

8 Determination of permissibility under local environmental plans

(1) If a local environmental plan provides that development for the purposes of mining, petroleum production or extractive industry may be carried out on land with development consent if provisions of the plan are satisfied:

(a) development for that purpose may be carried out on that land with development consent without those provisions having to be satisfied, and

(b) those provisions have no effect in determining whether or not development for that purpose may be carried out on that land or on the determination of a development application for consent to carry out development for that purpose on that land.

(2) Without limiting subclause (1), if a local environmental plan provides that development for the purposes of mining, petroleum production or extractive industry may be carried out on land with development consent if the consent authority is satisfied as to certain matters specified in the plan, development for that purpose may be carried out on that land with development consent without the consent authority having to be satisfied as to those specified matters.

Notwithstanding the application of clause 8 of the Mining SEPP, the assessment of the Project in this EIS:

- enables the consent authority to form the opinion that the development is consistent with the objectives for the zones in which the Project is to be carried out;

- enables the consent authority to take into consideration the effect of the Project on the matters set out in clause 11 of the Lithgow City LEP; and

- demonstrates that the Project is consistent with any relevant controls set out in Parts 3 and 4 of the Lithgow City LEP.

5.5.2 Draft Lithgow City Local Environmental Plan 2013

Lithgow City Council has prepared a planning proposal for the Draft Lithgow City Local Environmental Plan 2013 (Draft LEP 2013), which was lodged with the NSW Department of Planning and Infrastructure in April 2013. It is intended that the Draft LEP 2013 would implement the Standard Instrument LEP across the Lithgow LGA, and repeal the Lithgow City LEP. The existing and proposed new zonings are detailed in Section 2.5.3.

Under the draft Lithgow Local Environmental Plan, zones are renamed with additional objectives and land uses to better reflect the characteristics of the Lithgow Local Government Area.

The Draft LEP 2013 will seek to implement the key strategic directions of the Lithgow Land Use Strategy 2010-2030 (Section 5.5.2).

The planning proposal for the Draft LEP 2013 received its Gateway Determination from the NSW Department of Planning and Infrastructure in May 2013, after which the Draft LEP 2013 was prepared in compliance with the conditions of the Gateway Determination, and then publicly exhibited. The exhibition period concluded on 6 August 2013.
5.6 Other Considerations

5.6.1 Lithgow Land Use Strategy 2010-2030

Lithgow City Council’s Lithgow Land Use Strategy 2010-2030 (LLUS) was adopted by Council on 31 October 2011 and endorsed by the NSW Department of Planning and Infrastructure on 24 May 2012.

The LLUS is a combined Land Use Issues Paper and Strategy. It explores the issues that currently face the Lithgow LGA and recommends a new planning approach to address these issues. The Strategy will be implemented through the planning system, primarily through the Draft Lithgow LEP 2013 and Development Control Plan, as well as Council’s other policy, regulatory and governance functions. This Strategy is significant to Council and the community because it will set directions and policy for the LGA’s settlement and land use management for the next 20 years. The Strategy will be reviewed throughout this period every five years to ensure that its findings and recommendations remain relevant, are in keeping with sound planning principle and are continuing to meet the needs and expectations of the community.

5.6.2 Water Sharing Plans

Water sharing plans prepared in accordance with the Water Management Act 2000 include rules for protecting the environment, extractions, managing licence holders’ water accounts, and water trading within defined areas and specified water sources.

Springvale Mine is regulated by the Greater Metropolitan Region Water Sharing Plan established under Section 50 of the Water Management Act 2000. The Project Application Area straddles the boundary of the Sydney Basin Coxs River Groundwater Source and the Sydney Basin Richmond Groundwater Source. The Project location in relation to the Sydney Basin Richmond and Sydney Basin Coxs River Groundwater Source geographical boundaries are shown, as an inset, in Figure 2.27.

The Project Application Area lies across the boundary of two River Management Zones, the Wywandy River Management Zone of the Upper Nepean and Upstream Warragamba Water Source, and the Colo River Management Zone of the Hawkesbury and Lower Nepean Water Source. Each of these water sources are situated within the Greater Metropolitan Region Water Sharing Plan.

There is no direct extraction of surface water from either Water Sharing Plan, however, reduction in baseflow contribution to surface watercourses from local groundwater systems require licensing, as per the requirements of the NSW Aquifer Interference Policy.

5.6.3 Strategic Regional Land Use Policy

The NSW Government’s Strategic Regional Land Use Policy was introduced in September 2012 and sets out a range of initiatives to better balance growth in the mining industry with the need to protect agricultural land and water resources. The Policy includes a package of measures including the following key elements:

- The preparation of Strategic Regional Land Use Plans (SRLUPs) for both the Upper Hunter and the New England North West regions of NSW which identify and map Strategic Agricultural Land (SAL) and Critical Industry Clusters (equine and viticulture land uses) within these areas;
- The introduction of the NSW Aquifer Interference Policy (Section 5.6.4); and
- The requirement for Agricultural Impact Statements to accompany SSD applications for mining projects that have the potential to affect agricultural resources (Section 10.10).

The proposed key policy response for resolving land use conflict between mining and coal seam gas proposals and agricultural land is a ‘gateway process’. Under this process, a panel of independent experts would assess proposals involving mining or coal seam gas development on mapped SAL at an early stage before the lodgement of a development application. The outcome of the ‘gateway process’ would be that the proposal either meets the gateway criteria relating to agricultural and water impacts, or the proposal does not meet the criteria and therefore stringent requirements will be imposed that must be addressed at the
development application stage. The ‘gateway process’ will commence when the relevant amendments to the Mining SEPP and EP&A Regulation are made.

The existing SRLUPs do not apply to the Project Application Area. Notwithstanding, matters relating to soil landscapes, land use impacts, land capability and agricultural suitability have been addressed within this EIS in Sections 10.9 and 10.10. There is no land defined as Biophysical Strategic Agricultural Land within the Project Application Area.

5.6.4 NSW Aquifer Interference Policy

The NSW Aquifer Interference Policy (AIP) (DPI, 2012) is a key component of the NSW Government’s Strategic Regional Land Use Policy. The AIP clarifies the water licensing and approval requirements for aquifer interference activities, including the taking of water from an aquifer in the course of carrying out mining, and defines the considerations for assessing potential impacts to key water-dependent assets.

The AIP indicates that where mining results in the loss of water from an overlying source that is covered by a WSP, a water access licence is required under the Water Management Act 2000 to account for this take of water. According to the AIP, proponents of a mining project seeking development consent under Part 4 of the EP&A Act must provide estimates of all quantities of water likely to be taken from any water source during and following cessation of the activity and all predicted impacts associated with the activity. Hydrogeological modelling for the Project has been undertaken by RPS and is contained in Appendix E.

The AIP requires that potential impacts on groundwater sources, including their users and GDEs, be assessed against minimal impact considerations. If the predicted impacts are less than the Level 1 minimal impact considerations, then these impacts will be considered as acceptable. Appendix E and Section 10.2.4 consider groundwater impacts and aquifer interference requirements and clarifies that the Project is compliant with Level 1 Minimum Harm Criteria of the NSW Aquifer Interference Policy for Porous Rock Water Sources.

Any impacts on potential GDEs, basic landholder rights and existing registered bores are addressed in Appendix E.
CHAPTER 6.0

Socio-economic Analysis
6.0 SOCIO-ECONOMIC ANALYSIS

This chapter specifically responds to the Director General’s Requirements (DGRs), which provide the following in regard to social and economic aspects:

The Director General’s requirements

Social & Economic – including an assessment of the:

- potential direct and indirect economic benefits of the development for local and regional communities and the State;
- potential impacts on local and regional communities, including:
 - any increased demand for local and regional infrastructure and services (such as housing, childcare, health, education and emergency services); and
 - impacts on social amenity, particularly impacts on local residents of and other nearby landowners and residents;
 - a detailed description of the measures that would be implemented to minimise the adverse social and economic impacts of the development, including any infrastructure improvements or contributions and/or voluntary planning agreement or similar mechanism; and
 - a detailed assessment of the costs and benefits of the development as a whole, and whether it would result in a net benefit for the NSW community.

Further to the above, supplementary requirements to these DGRs were issued on 30 August 2013 stating that a description of the short-term and long-term social and economic implications and/or impacts of the Project are also required.

The assessment of the social and economic costs and benefits of the Project are inter-related and as such are addressed together within this chapter. With this in mind, the socio-economic analysis has not been developed as a mutually exclusive component of the EIS but has been considered throughout the development of the Project including its feasibility, mine design, identification and management of environmental impacts. This approach has been taken to ensure that ESD principles have been applied throughout the decision making process and incorporated into the EIS.

6.1 Social Assessment

6.1.1 Methodology

The Social Impact Assessment of the Project has been completed by James Marshall and Co (Appendix N) and provides for a systematic approach to the identification, consideration and assessment of the social impacts of the Project. The Social Impact Assessment identifies and develops mitigation measures to address these potential impacts. The methodology is summarised as follows:

1) Profiling: Understanding the scale and scope of the project, parameters of the Social Impact Assessment and identifying the stakeholders (determined by the areas of affectation), (Section 6.1.2).

2) Scoping: Identifying the potential impacts as a result of the Project through consultation and feedback with identified stakeholders. As identified in Chapter 7 of the EIS, consultation has been undertaken in accordance with an engagement strategy utilising a range of consultation methods such as informal and formal direct consultation, surveys and print media.

3) Assessment: Utilising the outcomes of the Project engagement strategy to determine the extent to which the Project is perceived to impact upon local, regional and State stakeholders (Chapter 7).
4) Management: Identification and development of mitigation measures where feasible. These management measures are for not only potential adverse or detrimental social impacts, but also where those identified as positive can be enhanced and developed. This allows for an assessment as to whether the Project meets a net community benefit criteria.

5) Monitoring: Plans to monitor identified impacts to ensure that management strategies are adhered to and that the potential cumulative impacts are identified and monitored where relevant.

6.1.2 Profiling

The Social Impact Assessment has considered the strategic objectives of the Lithgow Local Government Area (Lithgow LGA). It has found that the Lithgow region has a long history with mining and as identified in the most recent Australian Bureau of Statistics (ABS) Census (2011) data, mining is the largest industry of employment and is the economic base of the Lithgow Local Government Area employing 11.6% of the population aged 15 years and over (ABS, 2013). The importance of the coal mining industry to the regional economy is clearly defined within Lithgow City Council’s “Economic Development Strategy (EDS) 2010-2014”, identifying “…only the mining sector had a greater percentage contribution to gross regional product (27%) than its share of employment (12%)” (Lithgow City Council, 2010).

Even with the regional focus on the importance of the industry, through a review of the Lithgow Land Use Strategy 2010 – 2030 (Land Use Strategy), which has informed the Draft Lithgow City Local Environment Plan 2013, it is found that the principles applied to the Land Use Strategy represent a shift towards consolidating residential settlement and away from Lithgow’s industrial traditions to creating a more diverse economy via transparent land use planning principles, policies and strategies.

The existing and potential for tourism growth was identified in the Land Use Strategy and has been considered within the Social Impact Assessment. According to the EDS “tourism is becoming of increasing importance for economic growth and has caused governments and industry to engage in aggressive and intense promotional activities in order to develop and increase the effectiveness and quality of the sector. Lithgow LGA is a place endowed with significant natural and cultural resources that can capture the interests of visitors and therefore increased tourism investment”.

Table 6.1: Lithgow Land Use Strategy and Potential Areas of Impact for Springvale Coal.

<table>
<thead>
<tr>
<th>Activities</th>
<th>Reason for Potential Impact</th>
</tr>
</thead>
</table>
| There is an increased number of people living in rural areas | • Usually in-migration characterised by people from areas outside of the Lithgow LGA.
• Landholders in rural areas not always resident of the Lithgow LGA.
• Emergence of different values and connections to Lithgow – i.e. not share the areas mining history.
• Small lifestyle farms meaning that land holders will actively protect water and other resources if they feel they are being threatened.
• Fear in loss of land value. |
| Addressing land use conflict, especially between industrial uses and residential land uses. | • There are a number of examples where communities and industry has co-existed for many years. However, the shift in demographics, differing community expectations away from Lithgow’s industrial past, and the desire to preserve social amenity has led to increasing land use conflict. |
| Protection of sensitive environmental areas. | • Centennial’s Western Operations has a number of activities within identified sensitive environmental areas (Mugii Murrum-ban State Conservation Area, Newnes State Forest; Capertee Valley).
• There is an increasing move to protect these areas by a range of stakeholders which are not limited to NGOs (e.g. Colong; Blue Mountains Conservation Society) but also include land holders who have moved into the area. |
| Support and protection of other industries such as tourism. | • There is a move to recognise and pursue other industry sectors that are not related to mining and power generation to broaden and stabilise the economic profile of Lithgow LGA. Tourism is one such sector. Therefore moves to retain and protect key ‘gateways’ and scenic landscapes for visitors / travellers will become a priority. |
The Social Impact Assessment identifies the mechanisms employed by Springvale Coal to avoid and mitigate, where possible, the potential impacts identified in Table 6.1. In juxtaposition with community concern is the benefit brought to local communities through ongoing employment within the region. Employment in the mining industry provides flow-on effects for local support services via direct and indirect employment opportunities across a range of sectors. The flow-on effect of mine related employment and importance to the wider regional community is demonstrated in a recent employee survey undertaken at Springvale Mine which found the following:

- Nearly 76% of employees live in the Lithgow LGA and nearly 80% of these employees live in the major townships of Lithgow, Wallerawang and Portland.
- 70% of those surveyed have been employed in the industry for over 10 years.
- 47% have worked in the industry for two or more generations.
- 88% own their own home.
- On average, each employee surveyed spends 33.0% of their weekly income in their local residential community.
- Over 40% of mine employees’ partners work and most participate in some regular weekly sport or social activities.
- Most employees and their families participate in some local regular sport or social activities.
- The majority of employees' children, who do not currently attend school, participated in sporting activities in their local community.
- Employees have strong connections to their local communities demonstrated via shopping in the communities where they live, coaching junior sport, participating in social activities, supporting local fundraising activities.
- Employees are members of the local bush fire brigade and NSW State Emergency Service, and members of local clubs.
- Employees are aware of and utilise the natural assets throughout the area such as state forests and national parks for family outings.

Mine employees contribute to the overall social capital of the Lithgow Local Government Area meaning the sustainability of the mining sector and its related employment is vital to the broader economic well-being of the Lithgow LGA. Furthermore, the life of mine is an important consideration in an employee’s future planning for factors such as their children’s education and major purchases such as motor vehicles and homes.

6.1.3 Scoping

The Social Impact Assessment was supported by a number of site visits, review of the minutes of the Community Consultative Committee, review of the complaints register and ongoing consultation records and discussions. The scope of the Project would result in no change to the pit top and no social amenity impacts were identified.
The proposed mining area is to be located wholly within the Newnes State Forest, away from private landholdings and residences. How individuals and groups utilise the proposed mining area in relation to the Newnes State Forest and Newness Plateau were again based upon site visits, feedback and outcomes from community stakeholder engagement. It was identified that potential impacts of the Project upon local, regional and State stakeholders are those who primarily:

- access Newnes State Forest for recreation including 4WD, motorcycling and mountain biking that has an impact on the environment;
- access Newnes State Forest for recreation including bushwalking, bird watching and other passive uses that has a lower impact on the environment;
- aim to preserve the environmental value of the area from threats to sensitive surface features and ecosystems via opposing activities such as mining and restricting public access to certain areas;
- access Newnes State Forest as Springvale Mine employees; and
- access Newnes State Forest as employees of the Forestry Corporation of NSW.

A large proportion of public access remains within designated trails because access to main recreation, camping areas and lookouts is the primary goal for the majority of visitors. However, public access has had an adverse impact on some features in Newnes State Forest, in particular as a result of 4WD and motorcycles that operate off designated tracks. Sensitive surface features and ecosystems (such as the THPSS) have been adversely impacted upon and Forestry Corporation of NSW is currently undertaking rehabilitation to these areas. This has been supported by raising public awareness of the sensitive environment and promoting that visitors remain on formed tracks, trails and roadways.

The Colong Foundation for Wilderness is concerned about the impact of both mining and public access in the Blue Mountains area. These concerns have been documented in a number of publications, including the most recent document entitled *The Impacts of Coal Mining on the Gardens of Stone* (Keith Muir, Colong Foundation for Wilderness, March 2010), which identifies:

- cliff and pagoda damage arising from subsidence impacts from longwall mining resulting in the collapsing of cliffs; and
- loss of ground and surface water; the subsequent impact on sensitive swamps, creeks and drainage lines and subsequent impact on various ecosystems;
- Further concerns raised by the Colong Foundation for Wilderness identifies:
- damage caused by off-road vehicles (4WD and motor cycles) when driven in areas other than designated trails; and
- commercialisation of tourism and recreation activities (e.g. adventure tourism) that create intensive public access in certain areas.

The 2010 *Caring for Country Save our Swamps Project* undertook the Newnes Plateau Shrub Swamp Aerial Assessment to gain a better understanding of the overall health status of the swamps. This project identified concerns relating to ongoing land management and the impacts created from pine plantations, public vehicle access via the extensive road and track network and underground mining.

In 2010, the then Department of Environment, Climate Change and Water prepared a report as part of the Planning Assessment Commission’s review of the Bulli Coal Seam Project titled, *Review of the Piezometer Monitoring Data in Newnes Plateau Shrub Swamps and their Relationship with Underground Mining in the Western Coalfield*. This report identified concerns regarding the impacts of mining to swamps on the Newnes Plateau. The concerns expressed through these reports echoed those raised by the Colong Foundation for Wilderness in its 2010 report.
6.1.4 Social Impact Assessment

The potential impacts of the Project are identified and addressed in detail in the technical assessments and discussed within the EIS with relevant mitigation measures identified. Based on the review of specialist consultants reports, it is determined that the extent of long term social change arising from the Project is minimal and will not adversely impact on how people use the area.

The mine design and other mitigating factors have minimised the extent of the change to the physical environment to an extent that the Project will not adversely impact on the existing land use, its physical characteristics including surface features and the manner in which the public utilise / access the area for recreation.

Based on the review of specialist consultants’ reports, it is determined that the extent of long term social change arising from the Project is minimal and will not adversely impact on how people use the area. There will be no long term change to the social amenity of the area arising from this Project brought about by noise, dust and visual impacts.

The continuation of employment of the workforce is a positive social impact of the Project. Employee surveys undertaken at Springvale Mine have found that mine related employment directly contributes to the local financial and social economy. As the Project is a continuation of the existing mine, workforce numbers will be maintained at 310. Therefore the employment profile does not indicate any adverse impact on existing services or facilities or create any demand for additional services or facilities.

An adverse impact of the Project exists with individuals and stakeholder groups who aim to preserve the environmental value of the area and oppose any activities which would have an impact on the ecology of the area including mining, adventure tourism etc. The relationship with this stakeholder group is important but it is unlikely to reach a position where the Project impacts will be tolerated and a social licence to operate is granted. Accountability from the Project regarding environmental performance is required and is documented in Chapter 2.0, Chapter 8.0 and Chapter 10.0.

Newnes Plateau is identified as being an important feature of the Lithgow LGA by the local, regional and State stakeholders who access the area for activities noted in Section 6.1.2. Springvale Coal is a key stakeholder in preserving the Newnes State Forest as an important asset for tourism. While no change in the land use is predicted it is important to note that Springvale Coal is committed to:

- undertaking rehabilitation of cleared areas promptly to minimise visual impacts; and
- locating, where possible, surface infrastructure away from walking / access tracks and areas where visual intrusion is likely (i.e. from lookouts etc.).

There will be no change to the social amenity of the area arising from the Project brought about by noise, dust, visual impacts whereby the use of conventional management strategies identified in the EIS will not be effective.

6.1.5 Management

The mine design is the means in which changes to the environmental, economic and social conditions are determined. With regards to the social impact, the likelihood and extent of these changes are key factors in determining the scale of social impact. As mining has progressed at Springvale Mine, the alignment and dimensions of longwall panels have been developed and refined for a range of mine designs in order to prioritise avoidance and minimisation of potential impacts and constraints of surface features and geological and geotechnical issues, while considering mine feasibility and optimisation.
In the context of the Social Impact Assessment consideration was given to the following.

- **Environmental impacts in sensitive areas caused by mine subsidence.** This includes surface features such as cliff lines, pagodas, swamps, groundwater dependant ecosystems, surface ecology and Aboriginal and European heritage sites.

- **Adverse impacts to the amenity of the area.** This relates to noise, dust, visual impacts that adversely affects visitor experience. This would also consist of:
 - traffic impacts on forest tracks and local road networks during construction and operations;
 - change in land use that results in restricted access to certain areas (i.e. by surface infrastructure);
 - noise impact etc. having an adverse impact on recreation users of the area (e.g. when camping);
 - siting of infrastructure creating a visual impact at sensitive receptor sites.

- **When finalising the mine design, options reviewed were:**
 - adoption of bord and pillar mining methods. This was not viable due to the greater depths of cover and due to the geotechnical environment that does not allow a safe application of this mining method;
 - shortening longwalls or stepping around shrub swamps as in the case of Sunnyside Swamp overlying LW413. The latter is not economically viable due to the much higher development costs and discontinuity of mining operations; and
 - narrowing the longwall widths and/or increasing the chain pillar widths. This was the most viable option which provided both impact mitigation and financially sound operation.

The combination of a weak roof and a high stress environment means that longwall mining in the Lithgow seam at Springvale Mine is the only viable and safe mining method. The subsidence impacts of underground mining are predicted to be low and will minimise the impacts upon ecological constraints including the Sunnyside East Swamp and Carne West Swamps. The potential environmental and social impacts of the Project have been minimised through:

- obtaining a detailed understanding of the key environmental issues. The multi-disciplinary assessment and consultation has been to a level of detail commensurate with the scale of the Project, industry standards and the legislative framework under which the Project is considered; and

- a mine design with a successful and proven history in previously mined areas of elimination or minimisation of surface subsidence impacts, and that is safe for the underground workforce and visitors to the surface.
Conservative measures in mine design are:

- consideration of sensitive surface features such as swamps, cliff lines, significant rock features, watercourses and sites of cultural significance that overlie the proposed mining areas;
- optimisation of mine design such as narrowing longwall widths and increasing chain pillar widths. Narrower void widths are tested and proven to minimise subsidence and occurrence of subsidence effects;
- the selection of infrastructure sites, although somewhat dictated by the mine plan, but using existing tracks and with the least clearing of native forest, and realigning tracks where avoidance mapping has identified threatened species. Optimal locations for the infrastructure with least environmental impact within the ESAs have been selected; and
- consideration of alternative mining methods.

In conclusion it is found that the principles of ESD have been considered and achieved in all aspects of the Project. With regards to the specific requirements of the DGRs the findings are outlined in Table 6.2.

Table 6.2: Summary of Findings to the Director General’s Requirements

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any increased demand for local and regional infrastructure and services (such as housing, childcare, health, education and emergency services).</td>
<td>No adverse social impact identified due to the continuation of employment of existing employees and contractors. The continuation of employment would be a factor in minimising the risk of population out-migration and therefore population decline. The existing population accesses social infrastructure and services such as housing, childcare, health, education and emergency services and no further demand has been identified.</td>
</tr>
<tr>
<td>Impacts on social amenity, particularly impacts on local residents of and other nearby landowners and residents.</td>
<td>No adverse impact on social amenity identified at either the pit top or within the Project Application Area.</td>
</tr>
<tr>
<td>A detailed description of the measures that would be implemented to minimise the adverse social and economic impacts of the development, including any infrastructure improvements or contributions and/or voluntary planning agreement or similar mechanism.</td>
<td>The performance of the Project as outlined in the various specialist consultants reports and the supporting Statement of Commitments is the benchmark in which this Social Impact Assessment has been based. Should these factors change and the potential risk to the environment increase, there is a potential for adverse social impact. If these factors do change, a subsequent analysis of potential social impact should be undertaken.</td>
</tr>
</tbody>
</table>

6.1.6 Monitoring

As discussed in Section 4.13, Springvale Coal will continue to undertake monitoring in accordance with approved EMPs. A review of the existing EMPs will be undertaken, and plans undated as appropriate, to take into consideration the environmental assessments undertaken as part of this EIS, the Statement of Commitments, and all relevant consent conditions. Reviews of the monitoring data will be undertaken on a regular basis to ensure that management strategies are adhered to and that the potential cumulative impacts are identified and monitored where relevant.
6.2 Economic Assessment

6.2.1 Methodology
The Economic Impact Assessment for the Project has been completed by the AIGIS Group and the report entitled Springvale Mine Extension Project: Economic Impact Assessment (AIGIS Group, 2013) is provided in Appendix O. The assessment:

- addresses the relevant economic assessment requirements in accordance with the DGRs;
- addresses the relevant legislation principally through providing an assessment of the direct and regional economic benefits and costs of the Project; and
- identifies the Project’s net cost or benefit to the NSW community.

The assessment approach has been to apply a ‘triple bottom line’ framework to considering the interdependent social, economic and environmental benefits and costs associated with the Project. This approach is consistent with consideration of the requirements of ESD in accordance with relevant legislation.

In order to estimate the net cost or benefit of the Project, all technical reports that address the key environmental issues associated with the Project (as identified in the dot points above, the DGRs and the broad brush risk assessment (Chapter 9) have been subject to qualitative and quantitative analysis as part of the Economic Impact Assessment. This has resulted in the Economic Impact Assessment providing monetised estimates of key aspects of the Project, based on specialist assessments of their magnitude, and relevant valuation methodologies.

For a full description of the valuation methodology and the sensitivity analyses utilised to quantify aspects of the Project, refer to the Economic Impact Assessment in Appendix O.

6.2.2 Social and Economic Benefits and Costs
In the context of the Project, potential risks to social amenity are:

- impact on the intrinsic value of the area;
- direct impact on the social amenity of the area (brought about by noise, dust, visual impacts etc.) that requires the use of conventional mitigation strategies, or where conventional mitigation strategies are effective; and
- direct impact on the social amenity of the area (brought about by noise, dust, visual impacts etc.) where conventional mitigation strategies are not effective.

In this context, the social impacts of the Project are minimal (Section 6.1). This is because the extent of the change to the physical environment will have a low adverse impact on the existing land use, the physical characteristics and the manner in which the public access and use the area (such as mountain biking, motorcycle riding and four wheel drive driving).

Stakeholders who access the area for passive recreation such as bushwalking and bird watching may experience minor amenity impacts at proposed surface infrastructure locations of the Project predominantly due to noise and visual impacts during construction. However, this will be temporary and cleared areas will be progressively rehabilitated, as sites are decommissioned.

With only a slight change to existing employment numbers, the Project will not result in any increased demand for local and regional infrastructure services. However, the extension of operations will sustain this level of employment, and the derived stimuli to local and regional economies over the life of the mine. As identified by Lithgow City Council, the role of the mining industry is critical to the functioning and economic wellbeing of the Lithgow Local Government Area economy. While the employment profile does not indicate any adverse impact on services or facilities, by allowing for the continuation of employment at Springvale Mine, the Project will have a positive social impact to the site and surrounding area. Mine related
employment results in a positive community benefit with the direct spending from mining employees resulting in direct and indirect employment opportunities to occur across a number of non-energy and resources sectors including retail and accommodation. The benefit from mine related employment is not restricted to spending. Employees and their families participate in a range of work, education, social and recreational activities across the local community and region.

The NSW Department of Planning and Infrastructure has determined that the appropriate planning authority to determine if a Voluntary Planning Agreement (VPA) or S94 contribution is applicable to Lithgow City Council. Discussions between Springvale Coal and Lithgow City Council are underway with a VPA to be finalised prior to determination of the Project.

6.2.3 Estimated Economic Benefits

The benefit – cost analysis (BCA) data presented in the Economic Impact Assessment are net present values (NPV), at an assumed discount rate of 7% (consistent with the NSW Treasury economic appraisal guidelines (NSW Treasury, 2007)), except as otherwise noted. The key economic benefits that accrue to the local and State communities, as distinct from the proponent corporation, are the following.

- Salaries and wages paid to contract workers in the construction phase of the Project. These incomes then support additional activity in other sectors of the economy.
- Salaries and wages paid to full time employees at Springvale Mine, with similar flow-on effects to those noted above.
- Royalties on product coal which are remitted to the State. These are then redistributed across the State community in the form of publicly-provided goods and services.
- A range of federally-levied taxes, a proportion of which is similarly redistributed across the State community. This does not include provision for the carbon tax, or the Mineral Resources Rent Tax (MRRT) due to uncertainty as to their continuity.
- Various State (e.g. payroll tax) and Local Government (e.g. council rates) taxes, rates and charges.

Table 6.3 shows the valuation of economic benefits.

<table>
<thead>
<tr>
<th>Economic Benefit</th>
<th>Estimation assumptions</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction phase contractor incomes</td>
<td>Average 50 contract personnel required over staged 3 month construction programme (2017&2019) @ ≈ $65K p.a. each (pro rata).</td>
<td>$1.2 million</td>
</tr>
<tr>
<td>Mine operation-stage sustained employment</td>
<td>Direct operations employment sustained: 310 FTE positions.</td>
<td>$647 million.</td>
</tr>
<tr>
<td>NSW Government royalties</td>
<td>Based on assessed output over mine life extension period 2014-2039, and royalty rate of 7.2%.</td>
<td>$201 million.</td>
</tr>
<tr>
<td>Federal taxes (corporate income taxes); State taxes (e.g. payroll tax); Local Government rates and charges</td>
<td></td>
<td>$22 million.</td>
</tr>
<tr>
<td>Biodiversity provisions</td>
<td>Refer to Appendix 2 of the Economic Impact Assessment in Appendix O.</td>
<td>$2.9 million.</td>
</tr>
<tr>
<td>Project impact controls and mitigation provisions</td>
<td>Particulars included Section 10.11.</td>
<td>$28 million.</td>
</tr>
<tr>
<td>Total economic benefit</td>
<td></td>
<td>≈ $902 Million</td>
</tr>
</tbody>
</table>
6.2.4 Estimation of Economic Costs

The DGRs issued for the Project identifies key issues that the EIS prepared for the Project must address. These relate to:

- subsidence;
- land resources;
- water resources;
- biodiversity;
- heritage;
- air quality;
- greenhouse gases (GHG);
- noise;
- traffic and transport;
- visual;
- social and economic; and
- rehabilitation.

Where possible, valuation methodologies are derived from studies accessed through relevant government bodies. This may be considered as placing some greater level of reliability on these studies.

The identified valuation methodologies have been selected to as closely represent similar existing conditions for this Project as was achievable. However, in some instances the valuation methodologies are either more general, or related to projects of a different nature that retain some level of comparability. In this regard, it is important to emphasise that the Project relates to the development of a limited amount of industrial infrastructure and continued operations on a site, and in a geographic area that already features existing, similar infrastructure and activity, particularly that associated with present mining at Springvale Mine. This fact of itself may be considered as a mitigating factor in terms of valuing the extent of impacts on social amenity in this area.

There remains an unquantified element of social impact. This may be described as the ‘intrinsic value of certain impacts or effects, as attributed by individual stakeholders. This aspect can be highly individualised and subjective and consequently cannot be accurately quantified, as the estimation techniques applied, although based on valid methodologies, may not align with individual stakeholders’ values.

Table 6.4 itemises the estimated assumptions and costs associated with the impacts of the Project and Appendix O provides further details on the calculation methodologies.
Table 6.4: Estimate of Economic Costs of the Project

<table>
<thead>
<tr>
<th>Economic Cost</th>
<th>Estimated cost to the Community (all 2014 estimates)</th>
<th>Estimate of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>$119,843</td>
<td>$1.5M</td>
</tr>
<tr>
<td>Subsidence</td>
<td>$1,235,174</td>
<td>$16.4M</td>
</tr>
<tr>
<td>Soil & land capability</td>
<td>$1,235,174</td>
<td>$16.4M</td>
</tr>
<tr>
<td>Surface water & groundwater</td>
<td>$1,235,174</td>
<td>$16.4M</td>
</tr>
<tr>
<td>Air</td>
<td>$24,464</td>
<td>$324K</td>
</tr>
<tr>
<td>GHG emissions</td>
<td>$614,560</td>
<td>$6.4M</td>
</tr>
<tr>
<td>Archaeological heritage</td>
<td>$7,060</td>
<td>$94K</td>
</tr>
<tr>
<td>Natural heritage</td>
<td>$1,235,174</td>
<td>$16.4M</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>$37,611</td>
<td>$3.5M</td>
</tr>
<tr>
<td>Visual amenity</td>
<td>$16,177</td>
<td>$215K</td>
</tr>
<tr>
<td>Economic valuation of social and environmental cost</td>
<td>≈ $78 Million</td>
<td></td>
</tr>
</tbody>
</table>

6.2.5 Net Present Value

The net present value of the Project is outlined in **Table 6.5.**

Economic benefit (PV)	$902 million
Economic cost (PV)	$78 million
Net Present Value (NPV)	$824 million
Benefit-Cost Ratio (BCR)	11.6

6.2.6 Net Contribution of the Mining Sector

Clearly the mining sector is of significant importance in the context of such a relatively small regional economy. This is suggested by a number of matters raised in the Lithgow City Council EDS. The comparison of employment to output identified previously is indicative of a number of factors. Firstly, mining is relatively capital intensive, so the labour input may be comparatively lower. The EDS notes however that as much of the mining in the area is underground mining, this is relatively more labour intensive than open cut mining. Secondly, in terms of regional output, the sector stands out from the remainder of the local economy on the basis of its productivity and income effects relative to labour.

The EDS also notes that there is scope for expansion in the coal industry; however “there is still pressure for coal industry downsizing from efficiency rationalisation and this may ameliorate the benefits of increased exports”. The proposal to extend the Springvale Mine’s mining lease area represents a commitment to maintaining operations and the associated employment in the Lithgow LGA.

These sustained operational and additional construction-related positions associated with the application are of regional significance. The EDS emphasises the potential for severe impacts on the local economy that are likely to result from any premature curtailment of mining activity, as is exemplified in the following statements from the EDS (Lithgow City Council, 2010):

- “The major concern here is that many of these mining jobs are concentrated into a handful of businesses hence, as has been experienced in the past, any job losses tend to be on a large scale and hence may have an immediate impact upon the community”

- “This may have an impact upon the level of disposable income available to the Lithgow Resident Workforce in the future should the number of people in the mining industry decline further”
“This industry sector [mining] has also been shown as having a propensity to fluctuate mainly due to its sensitivity to international market forces. A critical impact of this is local business being heavily reliant upon a relatively small proportion of the community which has disposable income but one which can also be severely affected by changes to employment status. These families can also be considered as transient due to the specialised nature of their skills base. In other words a workforce with niche skills such as those in the mining industry is more likely to move from one region to another for work taking their disposable income with them”.

In the application of the above methodology, both the Economic Impact Assessment (Appendix O) and Social Impact Assessment (Appendix N) have considered the broader socio-economic impacts of the Project. The sustainability of the mining sector and its related employment is clearly vital to the broader economic wellbeing of the area. As is established, the Project will have a direct and positive impact on economic sustainability over the period in which coal resources can be economically extracted, both directly for employees and their households and indirectly for the broader regional economy.

Employment in the mining industry provides flow-on effects for local support services via direct and indirect employment opportunities across a range of sectors. The flow-on effect of mine related employment and importance to the wider regional community may be demonstrated by the application of multipliers for both the ongoing employment and engagement of contractors during construction.

6.2.7 Employment Multipliers

The NSW Department of Trade, Investment, Regional Infrastructure and Services (Division of Resources and Energy) has previously identified output and employment multipliers for mining and related services.

While acknowledging the limitations on multiplier analysis observed by, for example the ABS, the application of the relevant NSW Government Department's declared multipliers adds validity to the analysis. The relevant multipliers are displayed in Table 6.6.

Table 6.6: Type 2A Multipliers – Mining and Services

<table>
<thead>
<tr>
<th>Description</th>
<th>Multiplier Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Multiplier – mining & services</td>
<td>2.136</td>
</tr>
<tr>
<td>Gross Value Added Multiplier – mining & services</td>
<td>4.099</td>
</tr>
<tr>
<td>Income Multiplier – mining & services</td>
<td>2.839</td>
</tr>
<tr>
<td>Employment Multiplier – mining & services</td>
<td>3.977</td>
</tr>
</tbody>
</table>

The relatively large Gross Value Added multiplier value (4.099) demonstrates the importance of incomes generated by the Project. In addition to these mining multipliers, similar multipliers for mining construction activity were also identified (Table 6.7). These are relevant for assessment of the impacts of the initial stimulus associated with the various construction works required for the Project.

Table 6.7: Type 2A Multipliers – Construction

<table>
<thead>
<tr>
<th>Description</th>
<th>Multiplier Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Multiplier – construction</td>
<td>2.694</td>
</tr>
<tr>
<td>Gross Value Added Multiplier - construction</td>
<td>4.369</td>
</tr>
<tr>
<td>Income Multiplier - construction</td>
<td>2.899</td>
</tr>
<tr>
<td>Employment Multiplier – construction</td>
<td>2.727</td>
</tr>
</tbody>
</table>
6.2.8 Alternatives Considered

The mine plan and design of the Project has been developed to maximise resource recovery and economic benefits to the State (royalties and taxes), while reducing the potential impacts within the Project Application Area and the regional area, particularly in regard to potential subsidence impacts. Springvale Coal has foregone more profitable mine planning options with the aim of ensuring that potential impacts are reduced and managed to an acceptable level. Comparative analyses of the alternatives are included in AGIS (2013).

6.2.9 Conclusion

Benefits associated with the Project include the broad social benefit gained as a consequence of the continued operation of Springvale Mine in terms of the royalties and taxes that are provided to the State. These are subsequently redistributed across Local Government Areas, including Lithgow LGA. Similarly, the existing workforce at Springvale Mine will be sustained by the Project with the incomes received by employees resulting in further direct and indirect benefits across the regional community.

Springvale Coal has considered alternative mine plans and designs with the mine plan. This stage of the Project involved consideration of the principles of ESD and adopting the ‘triple bottom line’ paradigm. As a consequence, the design of the Project is expected to result in a beneficial outcome for the State and the Applicant, in addition to maximising the positive social benefits of the Project and minimising environmental and social effects to the greatest practicable extent. Due to the detailed mine design planning process, adoption of relevant mitigation strategies and commitments by Springvale Coal (Chapter 11); the potential negative impacts associated with the Project will be of significantly lesser magnitude than the benefits that will be generated by the Project. This is demonstrated through the qualitative and quantitative analysis completed within the Economic Impact Assessment.

With no change to existing employment numbers, the Project will not result in any increased demand for local or regional infrastructure services. The Project will have a low impact upon social amenity as it seeks to continue operations of Springvale and will therefore make no significant change to the existing land use or surface characteristics and will not change the manner in which the public utilise and access land within the Project Application Area.

The continued operation of Springvale Mine has provided substantial socio-economic benefits throughout the region. Although there will be no increase in employment numbers as a result of the Project, it will enable continuation of the existing benefits during the period of active mining at Springvale Mine. This is key to the socio-economic wellbeing of Lithgow LGA with the Project providing a net benefit to the community with regard to social, economic and environmental impacts and benefits.